MINT

Machine Independent Organic Software Tools

M.D. Godfrey, D.F. Hendry
H.J. Hermans, R.K. Hessenberg

Contents pg. xv

Online Version Revision History
Created on 27 October 2016.
Using pdftex: 3.14159265-2.6-1.40.17 (TeX Live 2016)

January 2001:
Initial TEX version created by conversion, using the MINT system,
of the COMADS source files which had originally been used to pro-
duce publication-ready images for Academic Press.

28 January 2002:
Partial corrections, mainly from Barrie Stott. The corrections are
fairly complete through Chapter 2. Chapter 4 has also been exten-
sively rearranged.

16 February 2002:
The optional TRAP instruction has been re-implemented and cor-
rected. Functions that use TRAP, T$ and TRMIX for example,
have been updated.
The corrections to the text provided by Barrie have been applied,
and additional corrections were made to Chapters 13, 14 and 15.

29 March 2002:
The VM has been changed to accept a string argument. This string
becomes the first string read by MINT, before reading input from
the normal input source. Thus, mint -i “SI startup.mnt” will cause
the file startup.mnt to be read by the SI directive. See Section 15.3.1.

26 December 2002:
Compiling on an ibook reminded me that PDUMP format is “end-
edness” sensitive. This is now made clearer in Chapter 14 and both
a big-end and a little-end PDUMP file of the compiler are included
in the system files.

21 May 2003:
The reference C-coded VM has been changed to use the GNU read-
line library including the save and restore of the history file. This
makes interactive use much more convenient. This feature can be
turned off by means of a directive for systems that do not provide
the readline library.

14 January 2004:
An Appendix has been added to the book. The Appendix provides
a chronology of significant corrections and changes to the compiler
and to the C-coded virtual machine.

iii

15 August 2004:
Changes were made to Section 1.9 to reflect the resources used by
the current system and by the Linux reference implementation.

11 July 2006
Minor updates to clarify and document recent changes. Table 8-1 is
now an up-to-date summary of compiler directives.

19 September 2006:

Changes to the VM were made to provide correct operation on
x86_64 systems. Currently, the system is still 32-bit, but it executes
correctly when compiled on 64-bit systems.

The requirement for separate PDUMP files for Little-ended and Big-
ended systems has been eliminated. The system type and PDUMP
file type are tested and the byte order of integers is reversed if
necessary.

16 April 2007:
Minor typographical changes, corrected the Index, and entered hy-
perlinks; one on the front page pointing to the Contents, and in the
Contents pointing to each Chapter.

28 July 2007:
Minor typographical changes mostly due to use of eplain and Meta-
post. Hyperlinks were introduced, and the index (using eplain func-
tions) was improved.

Preface to the Third Edition

This Edition describes MINT3. MINT3 includes a substantial number of
new features beyond the MINT system described in the book MINT, Re-
vised Second Edition (1985). The most significant changes are the intro-
duction of dictionaries by means of the CLASS DICT, inclusion of priority
(shunt factor) in the dictionary record (rather than the CLASS record),
and the inclusion of B-tree functions. The system has been changed to use
32-bit words and to use a large (typically 224 words) virtual address space.
Strings are now stored 4 characters per word.

The new dictionary mechanism is used to improve auto-compilation
of the system. Auto-compilation is now much simpler, more flexible, and
more clearly realized within the standard MINT facilities. One specific
improvement is that the layout and contents of dictionary records may be
changed during auto-compilation in a relatively convenient manner. This
will facilitate any further extensions of the system.

These changes and additions have resulted in a reduction of the listing
length of the compiler, including the auto-compilation procedures and the
B-tree functions, from 58 pages to 55 pages.

The new C-coded VM makes use of an environment variable. The VM
loads the compiler in PDM format (MCOMP.PDM) from the directory
pointed to by the variable MINT_HOME.

There are two other detail changes to the MINT compiler, and a con-
siderable number of corrections and clarifications in the text. The changes
to the compiler are that an identifier may be of any length (no longer
restricted to up to eight characters), and the OPINT and OPINTD opera-
tors were rewritten so that the sign is always correctly interpreted and the
correct interpretation of integers of magnitude greater than 64K is made
easier. The value of the first change should be obvious. Its implementa-
tion required making the dictionary records variable length. The operators
which manage variable-length records are also available, and are described
in Chapter 9. The second change came about due to the increasing use of

vi Preface to the Third Edition

MINT for applications where the use of 16 bits for the size of data-storage
units is inadequate. In the current implementations the data-storage unit
is 32 or more bits and additional data space is allocated beyond the MAX-
PLOC value. This extension has permitted MINT’s use on problems which
involve very large amounts of data. Generally, in these situations some form
of paging of VSTORE is desirable in order to avoid large real memory re-
quirements. As part of these changes, the C Virtual Machine implementa-
tion has become the standard. The Chapters on The Apple-IT and Sperry
UNIVAC implementations have been replaced by Chapter 15 — the C Im-
plementation. The previous Chapters 15 and 16 can be made available for
those interested in history.

One incompatibility has been introduced by these changes: the CLASS
directive now requires three fields instead of four. The precedence field is no
longer used. All instances of CLASS should simply delete the precedence
field. If non-standard precedence is required, use the PRIORITY directive
(See Section 4.9.2). No other incompatibilities are known at present. The
current compiler is identified as Version 3.0. The most significant correction
to the text is the replacement of Figure 9-2 and the accompanying text
which describe the layout of record lists. The descriptions of the EMULATE
and TRAP directives have been clarified.

The diagnostics have been further improved and extended based on
the discovery of a few additional errors in Virtual Machine implementa-
tions which got through undetected. Current experience is that successful
operation of the diagnostics is practically certain to imply correct opera-
tion of the Virtual Machine. The only significant Virtual Machine mecha-
nisms which are not checked by the diagnostics are use of nonzero segment
numbers, and the operation of EMULATE and TRAP. The compiler will
operate without implementation of these features, so they may be verified
after the compiler is fully operational.

The DO operator definition was extended to allow its operation on
primitives. This is a simple change in the VM definition which improves
uniformity.

Several new Virtual Machine implementations are now in use includ-
ing the implementation written in C. The C implementation is now the
standard for practically all systems.

The most ambitious MINT-written system of which we are aware is a
VLSI design system. The system provides a very compact notation for logic
definition, and provides flexible multi-level simulation. Starting in the late
1970’s, this system was used for a number of VLSI designs, including a chip-
set for a mainframe architecture. In the case of the mainframe chip-set, the
design system was used to define and simulate the entire chip-set, which

Preface to the Third Edition vii

was composed of about 1 million transistors. This became the UNISYS
2200 Series product in the 1980’s.

For this edition the source text of the Second Edition, in Sperry
Univac COMADS format, was converted to TEX. This was done “semi-
automatically” using a MINT program. This conversion permits produc-
tion of the text in PostScript and PDF format thus making it accessible on
the WEB.

Since this edition is available on the WEB, the compiler listing is not
included as an Appendix. Instead, it is available along with all the source
code at: mint3-dst.zip

Michael D. Godfrey
January 2002

https://sites.google.com/site/michaeldgodfrey/mint/

Preface to the Second Edition

This Edition is different from the first edition in two substantial ways.
First, several corrections have been made. The most significant of these is
the correction of the operation diagram for DICMATCH which appeared
on page 202. The other corrections are all minor, being either typographical
or obvious. The second difference is the introduction of several improved
or new components. The significant improvements are: the INCH primi-
tive which replaces GETSTR, a new virtual memory arrangement which
permits use of 64K words of virtual memory and permits more efficient al-
location of object text, a new portable format which is more compact and
which is checksum and sequence checked, consolidation of the OPENxF
primitives into the one new primitive OPENF, and provision of more pow-
erful and selective diagnostics at the virtual machine level. These changes
will not cause substantial incompatibility with respect to current source
text. Where appropriate, routines are provided which allow continued op-
eration of old constructs, such as a function GETSTR which uses INCH. In
other cases, obvious changes should be made in source text which is based
on the First Edition.

Chapter 12 has been expanded to include both MINT techniques and
examples. Chapter 15 now contains a description of the MINT implemen-
tation on an Apple-1I system instead of the Intel 8080 implementation.

During the period since the first edition we have benefited substantially
from discussions with and contributions from R. N. Riess. In addition, he
contributed the EMULATE primitive which is described in Chapter 6.

This edition has been produced by the Sperry Univac COMADS sys-
tem, as was the first edition. Thus, the process of production of the new
edition was to write the new text, edit it into the first edition files, ap-
ply the usual spelling checking and analysis tests, run proof copy, correct
and run final camera-ready copy. It is again a pleasure to acknowledge the
help of Richard H. Acquard who is responsible for the COMADS language
processor. In addition, Paul J. Pontinen, who has responsibility for the im-
plementation of COMADS on the COMp 80 microfilm processor, has been

X Preface to the Second Edition

particularly helpful in providing additional processing capabilities. These
enhancements have improved the appearance of the result, and the ease of
its production.

We have been pleased by the reactions of readers during the two years
since the publication of the first edition. There have been numerous requests
for copies of the system. We have found in practice that most potential
users can accept the system on ANSI-format magnetic tape. Due to the
problems of formats of cassettes and floppy disks, and our own access to
facilities, we have had to restrict availability to magnetic tape, a floppy
disk suitable for bootstrap loading into an Apple-IT+4 system, or, in special
cases, transmission over communication lines.

Michael D. Godfrey
June 1982

Preface to the First Edition

The tools described in this monograph are intended to improve the effi-
ciency of computer use and increase the value of the written instructions
(termed software) which control the operation of computing machines. This
is achieved through simplification and generalization of basic constructs,
and through separation of the written software from the machines on which
the software may operate.

It is intended that this monograph serve several purposes. First, it rep-
resents a complete summary of a body of research and development which
has been underway since the late 1960’s. Second, the content and level of
presentation are such that the text may be used for advanced undergradu-
ate or graduate courses in design and implementation of languages, virtual
machines, or simple stack based processors. In addition, the text contains
information which should be of interest to professional software writers or
system designers. The example implementations of the system can be used
as trial implementations for study, or may be used as the basis for produc-
tion application implementations. In practice, these tools have been found
to be highly effective for a wide range of applications on machines of widely
differing structure. We hope that this monograph will help others to make
effective practical use of these tools and techniques.

Until recently these tools were called the SNIBBOL system. While
SNIBBOL is as good a name as any other (better than most we could think
of), confusion with SNOBOL and other possible misleading associations led
us to change the name to MINT (Machine-INdependent Organic Software
Tools).

MINT has been put to practical use at several places. This practical
use has been essential to the development of the system and, we hope,
productive in its own right. The initial development of MINT took place
in the early 1970’s while D. F. Hendry was at the University of London
Institute for Computer Science. MINT was used there as a part of the
M.Sc. course. Many further uses have occurred in more recent years. We are
aware of MINT implementations for about ten different computer systems.

xii Preface to the First Edition

Many users of MINT are known to the authors. Many of these have
contributed significantly to further development of the system. We would
like to acknowledge this help even though it is not feasible to list all the
individuals who have made such contributions.

D. F. Hendry has been responsible for most of the basic concepts of
MINT as it exists today. The current compiler implementation was created
by Hendry. Initially R. K. Hessenberg tested and corrected the compiler,
as well as contributing helpful insights and improvements. Subsequently,
the compiler has been modified and extended by H. J. Hermans and M.
D. Godfrey. Hessenberg and Hendry wrote the initial version of the Sperry
Univac Series 1100 interpreter (described in Chapter 16) with some help
from Godfrey, who has subsequently modified and extended the imple-
mentation. Hermans wrote the Intel 8080 interpreter which is described in
Chapter 15. An initial MINT manual was prepared by Hendry and Hes-
senberg. That manual was extensively used in the preparation of Chapters
2 through 11 and Chapter 13 of the present monograph. The completion
of the monograph in its present form has been carried out by Godfrey and
Hermans.

This entire text, including all Tables and Figures, was prepared by
means of a Sperry Univac computer-based documentation system (CO-
MADS). It is hoped that the text reflects the quality of this system. The
system greatly facilitated the writing task, as many time-consuming activ-
ities, such as proof-reading, were carried out by the computer. The fact
that the entire document is stored in the computer has allowed use of the
actual source files where language text is given. Thus, all such text has
been processed as source text by the MINT system, and therefore checked
for correctness. The use of computer-based tools did not completely remove
the need for human assistance. Specifically, Richard H. Acquard has been
extremely helpful in giving advice and providing support concerning the
operation of the COMADS system.

This monograph is unusual in that the complete source text of the
system (compiler, virtual machine, syntax analyzer, other text, and exam-
ples) are given. This demonstrates the compactness and readability of the
system. By agreement with Academic Press Inc. (London) Ltd. the authors
retain the copyright of this machine-readable source text.

Copies of the system in machine-readable form may be obtained by
writing to me. When such a request is made, it is essential to state the
required medium from the following choices:

1. Industry standard magnetic tape, 9-track, 1600 bpi, ASCII coded card
images.

2. Standard cassette tape, ASCII coded images.

Preface to the First Edition xiii

3. Another recording device which has a standard RS-232C interface.
In this case the recipient must provide the recording device and the
recording medium.

There will be a charge made in order to cover the cost of copying.

Michael D. Godfrey
May 1980

Contents

Preface to the Third Edition v
Preface to the Second Edition................... ix
Preface to the First Edition............ xi
1.0 The MINT System.........c..oouiiiiiiiiiiiiiiinien. 1
1.1 Introduction 1
1.2 670 01 1
1.3 PUrpose ... 2
1.4 Background 3
1.5 MINT Functional Structure oo, 5
1.6 Organic Programmingot 6
1.7 The Dictionary Systemcoiiiiiiiiiiiiiii... 7
1.8 Uniformitycoooinii 7
1.9 Compactlessouuutet e 8
1.10 Storage Organizationc.ociiiiiiiiiiinieann.. 9
1.11 The Virtual Machine, 10
1.12 Introductory Examplesc.ooiiiiiiiiiiiiiiiiinnnnn. 12
2.0 MINT Language Componentscco..... 15
2.1 Introductionc.oo i 15
2.2 Definitions 15
2.3 Identifiers ..o 21
2.4 Internal Compiler Identifiers oL, 29
2.5 ComStaNtS .« oottt 29
2.6 Diagnosticsoiiiiii 33
2.7 Problems 35
3.0 Program Listing Control 37
3.1 Introduction 37
3.2 Listing Optionsoiiiiiiiii i 37
3.3 Comments and Paginationo 38

xvi

3.4
3.5

4.0

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
4.9
4.10

5.0

5.1
5.2
5.3
5.4
5.5
5.6

6.0

6.1
6.2
6.3
6.4
6.5
6.6
6.7

7.0

7.1
7.2
7.3
7.4
7.5
7.6

Contents
The TITLE Directivec.coiiiiiiiiii i, 38
Problems 39
MINT System Structure 41
Introductiono 41
Basics of the VM (M) Virtual Machine 41
Compiler Operationccoiiiiiiiieiiiiieann.. 43
The Dictionary Facilitiest 43
Use of NOW and PDUMP, 53
Auto-compilation Facilitieso oo 54
Compiler States and Data Declarations 54
MINT EXPressionsoooeuiteteennniiiiiieeennnnn. 57
Precedence 60
Problems 67
The Macro Facility 69
Introductionoiiii 69
Macro Bodies ... 69
Macro Parameters i 69
MINT System Macrosouueiiiniiiiniinn.. 70
Some Additional Macroscouuiiiiiiiiiiiia. 71
Problems 72
Basic MINT Constructsccoiiiiiiein... 73
Introductiono 73
VSTORE Referencingcooiiiiiiiiiiiiiiiiiinn.. 73
Operand Stack Management coi.. 76
Control Transferoo i 78
Conditional Selection and Iteration 79
Miscellaneous Constructsuiiiineeeeeeeee .. 84
Problems ... 88
Functions 91
Introductiono 91
Identified Functionsiiiiii i 91
Anonymous Functionso i 96
Miscellaneous Compiler Functions 99
Summary of Compiler Functions 100

Problems 102

8.0

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

9.0

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10

10.0

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10
10.11

11.0

11.1
11.2

Contents xvii

Directives and Immediate Execution 103
Introduction 103
Input Parameters for Directives (IPAR) 103
Referencing Directives as Functions 104
Immediate Execution 105
The Class DIirectiveooiiiieee i 106
Miscellaneous Directivescco ... 106
Summary of Compiler Directives 108
Problems 110
Lists and Free-Space Management 113
Introduction i 113
Basic List Structureco i 113
Adding to and Removing from a List 114
Free-Space Managementcoiiiiiiiiiiiin. 114
Ttem Lists ... 116
Record Lists 118
Variable Length Recordso i it 120
The Dictionary List Structure, 121
B-Tree Data ACCESS ...ttt 123
Problems ... 126
The External and String Operators 127
Introduction ... 127
MINT String Formatc i 127
Initialization of External Segments 128
Input Facilities ... 129
Compiler Input Facilities ..., 131
Output Facilities ... 135
Compiler Output Facilities i, 136
Closing of Segments ..., 139
The String Matching Primitives 140
The COMPILE Functiono, 141
Problems 141
The Syntax Analysis System 143
Introduction 143

Phrase Structure Analysis 143

xviii

11.3 Parsing Functions ..., 146
11.4 Optional Elements 147
11.5 Phrase Function Usage ..., 147
11.6 Listing of M-TRAN ..o 148
12.0 MINT Techniques and Examples 151
12.1 Introductiont 151
12.2 Entering Text 151
12.3 Translation and Manipulation of Text 151
12.4 Analysis and Diagnostic Techniques 152
12.5 A Simple Calculator 154
12.6 Text Editing Directives ..., 156
12.7 Instruction Execution Analysis, 166
13.0 The VM(M) Virtual Machine 171
13.1 Introductiono 171
13.2 The Virtual Machine Architecture 171
13.3 Virtual Machine Object Text Format 173
13.4 Loading the Virtual Machine 174
13.5 The Virtual Machine Instruction Set 177
13.6 Summary of Virtual Machine Primitives 233
14.0 The Distributed MINT System 235
14.1 Introduction 235
14.2 Virtual Machine Diagnostics, 236
14.3 The Compiler Object File, 238
14.4 Additional Source Text Files 239
14.5 Character Order Reversal in Strings 239
14.6 Compiler Creation and Source Structure 239
14.7 System Generation SEqUENCESooeeeinirrenineennn. 243
15.0 The C Implementation of VM(M) 245
15.1 Introduction 245
15.2 VM Componentsouueiutenueniemeeneaianennn.. 245
15.3 Operation of the VM i 249
Appendix: History of Corrections and Changes 255

Subject Index ... 259

The love of economy is the root of all virtue.

G. B. Shaw

1. The MINT System

1.1 Introduction

The MINT system is a set of tools to facilitate communication with, and op-
eration of, computers. These tools provide a high level software environment
which is machine-independent and open-ended. The machine-independence
implies that the MINT system, and MINT based applications, are readily
portable to many machines. The open-endedness implies considerable flex-
ibility in altering or extending the language facilities. The language itself
allows sequences and expressions at as high or as low a level as is desired.

MINT is implemented in terms of a Virtual Machine which allows
exactly the same (virtual) environment to exist regardless of the actual
machine on which the system is operating. This Virtual Machine is referred
to as the VM(M) Virtual Machine, and the instructions which the Virtual
Processor executes are the VM (M) instruction set. Careful definition of this
Virtual Machine contributes to the portability, compactness, efficiency, and
verifiable correctness of the system.

1.2 Scope

The scope of MINT is very wide both in terms of machines on which it may
operate and in terms of potential applications. At present MINT operates
on such machines as the Apple-II and on large general-purpose mainframe
systems such as the Sperry Univac Series 1100. Applications which have
been written entirely in MINT include a number of compilers and assem-
blers for both small and large machines, language interpreters, a text editor,
and interactive dialog systems. These implementations were all relatively
low cost in terms of development and implementation effort when compared
to similar efforts using conventional techniques. The resulting programs are
readable, and portable to any new machine.

In addition to its direct usefulness as a set of development and imple-

2 Machine-Independent Organic Software Tools

mentation tools, MINT can be an effective means of communication. MINT
written text is precise, compact, and readable. The MINT Virtual Machine
is a simple and carefully structured machine which displays the essential
features of a stack-based (or zero-address) machine architecture. Thus, the
MINT system provides an effective means of communication between peo-
ple, between machines, and between people and machines.

The emphasis on effectiveness of communication makes MINT suit-
able for teaching computing principles and techniques. The system may
be used to teach or learn about stack-based architecture, virtual machine
design and implementation, compiling, macro structure, parsing, and con-
cepts and techniques of portability. In this text we have not attempted a
strict separation of these subjects. This is because we feel that they are not
reasonably separable. Much of the effectiveness and interest in a system
such as MINT derives from the structural relationships of the components,
rather than from the components themselves. Thus, in this text, we have
tried to develop an understanding of how MINT fits together. This may
initially seem to impede learning, where compartmentalization is always a
strong temptation. However, we believe that the end result will be found
to be beneficial. The complete MINT system is more significant than the
sum of its parts.

1.3 Purpose

The purpose of MINT is to facilitate the analysis and transformation of
structured symbolic information. An example of such analysis and transfor-
mation is a conventional language compiler. Other examples include text-
editing routines (such as those given in Section 12.6) or interactive dialog
systems for specific applications.

In order to satisfy a wide range of possible requirements, the system
is organized in the form of a set of general-purpose tools. These tools may
be used for many purposes, including the development of new tools. The
system itself is constructed by means of the tools which it provides for
general use. The open and modifiable structure of the system is essential
to its generality, and allows a holistic approach to many problems which
previously required ad-hoc solution methods.

Due to its compact structure, MINT is well suited for use in very small
machines. An eight bit processor with 32K (here, and throughout, K is used
to mean 1024) bytes of storage is sufficient for many purposes. However, the
system also operates effectively on large-scale systems. The change made in
MINT-3 to use 32 bit storage units permits use of a 32 bit virtual address
space, i.e. 232 — 1 storage units.

The MINT System 3

The complete machine independence of the MINT language permits
the writing of systems which may have wide applicability and permanent
value.

1.4 Background

Historically, computing has developed from a primary interest in the al-
gorithms required for solution of numerical problems. The earliest forms
of computing were characterized by relatively large algorithmic programs
which operated on relatively small quantities of data. As computing tech-
nology developed there was a tendency to apply the tools which were de-
veloped for this structure to other, often non-numerical, problems. At the
same time, the volumes of data, both numerical and symbolic, began to
grow very rapidly. At present it is frequently the case that the amounts of
data to be processed far exceed the size of the processing programs. Usu-
ally, the purely numerical processing accounts for only a very small part
of the total. Thus, it is natural to question the basic structure of current
computing tools, based as they are on conditions which no longer prevail.
It is clear that if programs are used to process very large quantities of
data, the value of the program and the importance of correctness of the
program are increased. It is also evident that much of the complexity of
current computing derives from the attempt to develop algorithms which
express symbolic transformations. Finally, the slow and cumbersome oper-
ation of early computers provided the incentive for investment in improved
efficiency of program execution. Early programs were often operated with-
out substantial change for long periods. Thus, substantial effort in writing
and understanding the program could be justified. The speed and flexibility
of current computers imply that the limiting factor in their productive use
is the rate at which information which is understood by humans can be
precisely and correctly communicated to and from the computing system.

These background considerations have led us to attempt to develop
new language tools which are based on the view that data transformation is
the fundamental task, and that machine independence, readability, effective
structure, evident correctness, and precision are essential.

1.4.1 Principles

Current developments in computing suggest that the following principles
should form the basis of an effective set of tools.

4 Machine-Independent Organic Software Tools

1.4.2 Data Transformation

The fundamental task in most computing applications is the transformation
of the input data into the output data. The means by which this transfor-
mation is carried out are of no direct interest to the computer user. This
principle implies that the main task in computing should be the declarative
task of stating the form of the input and the desired form of the output.
If an algorithm is necessary to carry out the defined transformation, this
should not be made evident to the user.

1.4.3 Machine Independence

Due to the continuing proliferation of distinct computing systems, it is
very probable that a given user task will be desired to be performed on
several different computers. The only way in which such operation can be
carried out efficiently is to have a completely machine independent means
of expressing the intended task. Such machine independence will permit
software to attain real economic value, as the software will no longer be
restricted to a specific set of hardware.

1.4.4 Readability

The text which causes a computer to carry out a desired transformation
must be written, read and understood by people. The present importance of
data transformations is such that these computations should not be carried
out by programs which are imperfectly understood. In addition, readability
must not be in conflict with efficiency or compactness of the resulting ma-
chine program. This conflict is evident in many current language systems,
but is not present in MINT.

1.4.5 Structural Clarity

The principle of structural clarity is closely related to that of readability. A
computing system must induce clear structure in the text which is written
for that system. A clearly structured program should be more efficient than
a poorly structured one. This implies that it should be easier to express
the required task in a well structured manner than otherwise. In particular,
there should be no syntactic, or execution efficiency, penalty attached to
the use of easily understood procedures to carry out elementary steps in
program execution. Of even greater importance, the use of structured data
should lead to increased ease of program writing, more readable results, and

The MINT System 5

higher execution efficiency. The structured data should be easily understood
in terms of the user-view of the computing task.

1.4.6 Self-Realization

Any truly effective system must be self-realizing in the sense that it is based
on the facilities which it provides. If a facility is provided, there should be
only one such facility which is used by the system and by users alike. This
principle is important for compactness, but is also essential for correctness.

1.4.7 Precision

The basic components of a language system must be such that they are
subject to exact definition and complete verification of correct operation.
This, in practice, implies that the basic components must have a high degree
of orthogonality. Components are orthogonal if they are defined in such a
way that there is no dependence between the two definitions. Orthogonality
implies that each basic component may be separately verified.

1.5 MINT Functional Structure

Figure 1-1 depicts the general structure of the MINT system, and illustrates
the means by which MINT achieves machine independence. The Virtual
Machine Interface is precisely and compactly defined. It is independent
of any specific Virtual Machine implementation. It is exhaustively tested
by the VM Diagnostics. Thus, all information which is above the Virtual
Machine Interface line in the Figure is entirely unaware of the underlying
host system. It sees only the Virtual Machine Interface. The main task in
implementing MINT on a new host system is the creation of a VM(M)
Virtual Machine which matches the particular Host System Interface. Due
to the compact and orthogonal definition of the Virtual Machine Interface,
it is a simple task to create a new verified VM (M) Virtual Machine.

Note also that dashed lines are used to separate the various compo-
nents of the MINT System. This is intended to indicate that the Language
System is entirely flexible in terms of access to facilities and definition of
structure. The user may write applications at a low or a high level and
may create or exclude facilities as specific application requirements may
dictate. This organic structure is discussed briefly below, and is a main
theme throughout the remainder of this monograph.

6 Machine-Independent Organic Software Tools

Editor \ M-TRAN !
' (Syntax Analysis) !

VM(M) MINT /Applications
Diagnostics Compiler ! (lower-level)

Virtual Machine \)
Interface ___, ! !

VM(M)
Virtual Machine

Host System
Interface ___,

Host System Software (optional)

Host Machine

Figure 1-1 MINT Structure

The example extensions of the system shown in Figure 1-1 are M-
TRAN, a syntax analysis system suitable for a wide range of text analysis
or compiler applications, and an editor which provides a convenient means
of creating and modifying text files. M-TRAN is described in Chapter 11
and the editor is described in Section 12.6.

1.6 Organic Programming

The MINT system is structured in such a way that all its facilities may
be available to the programmer at all times. No strict distinction is made
between compile-time and execution-time. For this reason it is customary
for the compiler to be resident at execution-time with all its functions
potentially available as a run-time system. In such an environment all user
programs become conceptual extensions to the MINT compiler and may

The MINT System 7

take control of it if appropriate, or conversely they may act as new language
features tailored to a particular application. This is termed an organic
environment.

While in many cases the organic structure results in a system with
increased scope, it is also possible to reduce the set of available facilities.
Such reduction is useful in order to provide a well controlled environment
for many application systems. Both the extension and the reduction are
normally reversible so that the environment may be adjusted to suit current
requirements.

1.7 The Dictionary System

The basis for the organic structure of the system is the dictionary. The
compiler is driven by the input mechanism which attempts to match input
sequences with the current set of dictionary entries. If a match is found
the compiler carries out the actions associated with the class to which the
matched dictionary record belongs. All dictionary items which are to be
treated in the same manner by the compiler are declared to belong to the
same identifier class.

Dictionaries are declared by use of the DICT directive. Dictionary
names are maintained in a list and the user may declare which dictionary is
to be used for new introductions and searches. The programmer may modify
the entries in dictionaries by insertion, renaming, and removal of identifiers.
He may likewise define or modify the actions which are associated with each
identifier class. He may also define new classes. Thus, the behavior of the
system may be made to satisfy a wide range of requirements.

Since the dictionaries control the entire system there is no strict dis-
tinction between compiler text and user written text. Since a dictionary
may be modified at any time, there is no strict distinction between com-
piler translation of text and execution of user written text.

1.7.1 Dictionary Entries

The item name contained in a dictionary entry is termed an identifier.
Identifiers are composed of sequences of character codes. All codes in the
ISO/ANSI seven-bit code are allowed including the control codes, such as
carriage-return. This generality of identifier construction allows all identi-
fied objects to be normal dictionary entries. Thus, all actions are deter-
mined by matching of character strings with dictionary identifiers.

8 Machine-Independent Organic Software Tools

1.8 Uniformity

The dictionary system provides one level of uniformity in the system. An-
other level of uniformity is provided by the fact that many of the func-
tions which the compiler uses as part of the compilation process are in
fact general-purpose functions which are also available to the user. Thus,
in general, no duplication or specialization is imposed on the application
programmer. All of the tools used in construction and operation of the
compiler are uniformly available.

1.9 Compactness

All components of the MINT system have been designed to be compact.
This has been done in order to achieve a system which can be well under-
stood and which will be efficient in both space and time requirements. A
total memory size of 10K 16-bit words is sufficient to operate the entire
16-bit system. It is usually found that less object-text space is occupied,
and fewer instructions are executed by procedures written in MINT than
the corresponding procedures written in the assembly language of typical
general-purpose computer systems.

Compactness is also achieved by means of a low level of redundancy.
This implies that MINT source text should be written and read with care.
This care will be rewarded by exceptionally clear, concise, and efficient
implementations.

1.9.1 MINT System Size

One quantitative indication of the compactness of MINT is the amount of
storage used by the system components. These amounts are shown in Table
1-1.

The following points provide interpretation of this Table:

1. Identically the same MINT compiler is used on all machines. Conse-
quently, the size of the compiler does not vary from one installation to
another.

2. The size units are currently 32 bit words.

3. Dictionary records can be reclaimed if the facilities to which they give
access are no longer required.

4. The size of the VM(M) Virtual Machine will reflect the power of the
host machine’s instruction set, the size of the system’s run-time li-

The MINT System 9

braries, and the goodness of fit between the host machine and the
VM(M) Virtual Machine.

Table 1-1 Store Usage in the MINT System

Component size in K-words
MINT compiler (machine independent) 7.6
Program space used 4.3
Data space used 11.9
Virtual Machine (system dependent: (gcc-4.1.1 1386 value used)
With gdb diagnostic data 54K bytes
Without gdb diagnostic data 27K bytes

The complete compiler system source listing is approximately sixty
pages long, including the text for auto-compilation. A full compilation list-
ing of the compiler may be produced using the procedures explained in
Chapter 14.

1.10 Storage Organization

The storage (or memory) which is made available by the Virtual Machine
consists of two blocks of contiguous storage units. The entire addressable
space is referred to as VSTORE. One block of storage starts with address
zero and contains storage units of at least 16 bits. The other storage block
was in the past (MINT-2) expected to start at address 32K and contains
storage units of at least 8 bits. The first block is referred to as data-space
and the second block is referred to as procedure-space. Previously, each of
these blocks could contain up to 32K storage units. Since MINT-3 uses 32
bit addresses, procedure-space can start at an address high enough to ac-
commodate a large data-space and free-space. Starting at the high end of
data-space is an area called free-space. The allocated area of free-space ex-
pands upward (as shown in Figure 1-2) toward the boundary of allocated
data-space. While a MINT program is running, it may adjust the data-
space and procedure-space pointers to provide allocation in other regions
of the total available memory. Figure 1-2 illustrates the layout of these areas
and the manner in which space is allocated within each area. Data-space,
controlled by the compiler pointer variable DLOC, is used for space allo-
cation of data variables, macros, and character strings. Procedure-space,
controlled by the compiler pointer variable PLOC, is used for allocation
of the compiled object text resulting from procedures. Free-space is used
for buffer areas as explained in Chapter 9, and for dictionary storage. The

10 Machine-Independent Organic Software Tools

values Ng and N, are the upper limits of data-space and procedure-space
respectively. These values are set by the Virtual Machine. They may be
determined by the size of problems or the amount of available memory.
This is more fully explained in Section 13.2. If the compiler is loaded into
VSTORE it occupies approximately the first 4300 words of data-space, the
first 7600 words of procedure-space, and about 110 words of free-space.
These numbers are as given in the first three entries in Table 1-1. If the
Virtual Machine implementation permits use of virtual memory, a large
space may be acquired for the MINT Virtual Storage. In this case, N; and
N, may be given fairly large values, and a very large area above N, may be
made available for application use. Specifically, the reference Virtual Ma-
chine, described in Ch. 15, is configured to provide a total of 16M words of
Virtual Storage. The storage required for the Virtual Machine interpreter
is not a part of Virtual Storage.

1.11 The Virtual Machine

The basis for the execution of all MINT text is a Virtual Machine. A Vir-
tual Machine is defined as a composite of hardware and software which
presents an execution environment which satisfies a specified (Virtual Ma-
chine) definition. The Virtual Machine definition required for MINT oper-
ation is given in detail in Chapter 13. The basic structure of the Virtual
Machine is given in Section 4.2. Since the MINT system is entirely written
in MINT, the single Virtual Machine operates the compiler system and all
user written text. The Virtual Machine which implements this environment
is referred to as the VM(M) Virtual Machine.

The object text which is created by the compiler, and executed by
the Virtual Machine, is defined in terms of instruction words, integers,
and character strings. The object text also has an ISO/ANSI character
representation for external storage and for transportation between systems.
This format is termed the portable format.

The portability of the MINT system is achieved by definition of a
Virtual Machine with a compact instruction set which is easily mapped
onto most real machines. The Virtual Machine is what is termed a stack-
based reverse-Polish machine. These terms will be explained in subsequent
Chapters.

The MINT System 11

Virtual Storage

data-space

|
|

free-space

procedure
space

|

Figure 1-2 System Storage Allocation

The Virtual Machine may be implemented on a host (real) machine in
several ways; by interpretation of the Virtual Machine object text, an ap-
proach which is very fast to implement; by means of an object text genera-
tor appended to the MINT compiler which generates object instructions for
the host computer; or by micro-coding the VM (M) Virtual Machine instruc-
tion set. Virtual Machine interpretation has become by far the most fre-
quently used implementation method. This approach minimizes the amount
of non-MINT language or special-purpose text and produces, in most en-
vironments, a very efficient system. If the host system is already accessible

12 Machine-Independent Organic Software Tools

(i.e. it has a file system, an editor, and a suitable language processor) the
VM(M) Virtual Machine interpreter can be implemented directly on the
host machine using whatever language is most suitable. Then, the portable
format loader may be implemented in a similar way. This completes the
implementation. If the host system has no (or inadequate) software facili-
ties, another host system should be used. In this case it is usual to write a
basic assembler in MINT for the new host machine and write the Virtual
Machine interpreter in this assembly language. The output of the assembler
may be portable-format host instructions. (Portable format is described in
Section 13.3 and 13.4.) Then the only remaining task is to write the text
loader for the host machine so that this machine can load data in portable
format. A complete implementation, using any of these approaches, should
not require more than a few weeks’ work.

Chapter 15 describes the reference Virtual Machine implementation
in C. The source code for this implementation is included in the MINT
distribution. The source code should compile without problems on most
contemporary systems, such as Linux.

1.12 Introductory Examples

Some of the characteristics and power of MINT can be appreciated only
after study and experience. However, simple uses are easy to learn. The
following examples should be understandable even at this point.

In MINT, a procedure which is to be obeyed when the compiler en-
counters its name is called a directive (DIR). In fact, much of the compiler
itself is composed of directives. For example, we might write the following
directive, whose name is EVAL:

DIR EVAL: ENTRY,
IPAR,
OPINT(),
OPNL, EXIT .

When this directive is referenced the first action is to reference the proce-
dure IPAR. TPAR is a compiler procedure which reads the next expression
from the input source, evaluates the expression, and leaves the result on
the operand stack. (The operand stack is a storage area used for instruc-
tion operands and for procedure parameters. This is more fully explained
in Section 4.2.) The procedure OPINT simply prints the value found on
the operand stack. OPNL sends a carriage-return character to the out-
put stream. This closes the current line of print. EXIT causes a return to
the point at which the current procedure was referenced. Thus, if we have

The MINT System 13
defined and set two variables by:

VAR X: 25
VAR Y: 19,

we could then write:

EVAL(X+Y)

and obtain the result

00044

printed as output. The details of how and why this example works will be
fully explained in subsequent Chapters. The example itself is used again in
Chapter 12 where it is more fully explained.

A similar result to the above example may be obtained by a seemingly
quite different construction:

NOW OPINT(25+19), OPNL ! .

This line is treated in the following way by the MINT system. When the
NOW directive is encountered the compiler treats all text up to the next
! (also a directive) as text which is to be immediately compiled, executed,
and then discarded. Thus, the OPINT(25+419), OPNL sequence is compiled
and executed. This causes the result 00044 to be printed, exactly as in the
previous example. After execution, the space used by the generated object
text, and all record of the compilation, is discarded.

Yet another example construction is:

MACRO PRINT: 'NOW OPINT(X), OPNL !’ .

This text simply causes the compiler to save the string

NOW OPINT(X), OPNL !

as a MACRO whose name is PRINT. After this definition and setting of
PRINT, if the identifier PRINT is provided as input, the compiler will
substitute the string

NOW OPINT(X), OPNL ! .

This will result in immediate compilation and execution just as if the string
had been entered directly. Thus, the value of the variable X will be printed.

At this point an aspect of MINT generality should be evident. Con-
ventional procedures may be written and executed after the compilation

14 Machine-Independent Organic Software Tools

process is complete (these are called MINT functions). Alternatively, direc-
tives may be written which are executed immediately upon occurrence of
a reference to the directive, or immediate compilation and execution may
be obtained by use of the NOW...! construction. Finally, compilation may
be deferred until later by means of MACROs. No restrictions are placed
on the use of these facilities. They may be used in whatever context or
combination may seem effective for a given application.

Note that in some cases, such as those above, the standard function
and argument notation such as

OPINT(X+Y)

is used. However, since the operand stack is always used for procedure
parameters, the above text could equivalently be written as

X+Y, OPINT .

The + operator leaves its result on the stack, so that this result is available
as the parameter of the OPINT reference. The compiler, in effect, carries
out just such a rearrangement on the standard notation. It is good practice
to indicate that a procedure expects arguments by means of parentheses
and commas even if some of the parameters have been obtained previously.
Thus, the above text would normally be written as

X+Y, OPINT() .

The use of the stack and the role of parentheses and commas will be more
fully explained in Chapter 4.

2. MINT Language Components

2.1 Introduction

This Chapter provides a general introduction to the MINT language and
the facilities available in the MINT compiler. Subsequent Chapters give
more detailed and precise definitions of each component of the system.

2.2 Definitions

The major constructs of the MINT system which require definition at this
point are the Virtual Machine primitives, the IPAR mechanism, and the
object classes provided by the compiler.

2.2.1 Primitives

The Virtual Machine primitives are the instructions which are carried out
by the VM(M) Virtual Machine. These primitives are fully described in
subsequent Chapters. Chapter 13 gives the precise definition of each primi-
tive in a form suitable for the implementation of the Virtual Machine. The
term operator will be used to refer to primitives in many cases. However,
operators include directives, functions, and macros as well as primitives. No
special syntax is used to distinguish between operators. For this reason an
operator may be a primitive in one MINT implementation and a function
in another implementation without causing any incompatibility.

2.2.2 The IPAR Mechanism

The IPAR (Input PARameter) mechanism is used to compile and evalu-
ate input sequences. This is the facility used by the compiler to obtain
evaluated results. For example, the syntax action which results from the
recognition of a known identifier may cause the compiler to reference the
IPAR mechanism. This in turn will cause the compiler to compile and exe-

16 Machine-Independent Organic Software Tools

cute the subsequent expression from the current input stream, and return
any resulting values on the operand stack. When the IPAR procedure is
referenced, the next input sequence is acted upon as if it were enclosed
by a NOW...! sequence. The user may make use of the IPAR mechanism
whenever there is a need to obtain the result of compilation and execution
of a sequence of characters from the input stream.

2.2.3 The Class Construct

The class construct permits the definition of the fundamental structures
which determine the actions of the MINT compiler. It also permits the
declaration by the programmer of any syntactic constructs which he may
choose. Normally, the compiler is driven by its input mechanism which at-
tempts to match input sequences with the current dictionary entries. When
a match is found, the compiler carries out the syntax action as determined
by the class of the matched item. When no match is found to exist in the
dictionary for an input sequence the compiler normally rejects the input
with an appropriate diagnostic. However, a mechanism exists which causes
input sequences to be converted to identifiers and inserted in the dictionary.
The use of this mechanism is referred to as the introduction of an identi-
fier. An identifier must always be introduced into a specified class. The
syntax action which is referenced when the identifier CLASS is matched is
a procedure which introduces the name of a new class of identifiers. The di-
rectory record which is created by the class syntax action is a record which
contains the address of a record which contains the attributes of the newly
introduced class. The structure of the class construct allows the source text
for the MINT compiler to introduce the class construct by means of the
construction: CLASS CLASS.

2.2.3.1 Class Attributes

The introduction of an identifier into the dictionary causes the attributes of
the appropriate class to be set in the new dictionary record. Although the
number of attributes is variable, the MINT compiler normally associates
three attributes with each identifier. Together, these three attributes enable
a wide range of syntactic structures to be analyzed, and translated into
text which can be executed by the Virtual Machine, or which may be
further transformed for other forms of execution. The attributes are briefly
described below:

Syntax Action: The syntazr action attribute determines the action to be
performed by the compiler when the identifier is recognized in the input
stream.

MINT Language Components 17

Assignment Action: After an identifier has been introduced, data may
be associated with it. The data may take the form of an arithmetic value,
a character string, the address of an object-text sequence (procedure), or
a specified address in virtual storage. This association is referred to as as-
signment. The assignment action is determined by means of the assignment
action attribute.

Generative Action: The generative action attribute determines the action
to be taken when the compiler is called upon to generate object instructions
or data as a result of the compilation of a reference to an identifier. Not all
identifiers require a generative action attribute since all required actions
may have been performed by the syntax or assignment actions.

In addition a precedence attribute is associated with each identifier.
The precedence attribute is a number which determines the sequence in
which the generative actions are performed. The precedence number is
recorded in the identifier’s dictionary record. The default precedence is
determined by the class of the identifier, but the value may be overridden by
use of the PRIORITY directive (See Section 4.9.2.). The default precedence
for all classes shown in Table 2-1 is zero, except for the CLASS PRIM. The
default precedences for PRIM re given in Table 4-1. The use of precedence
is explained in Section 4.6.

2.2.4 Initially Defined Classes

In addition to the class CLASS itself, the following classes are defined in
the compiler and are available for general use. These classes are used within
the compiler and are sufficient for many purposes, such as compiler writing.
However, new classes may be introduced as needed. The compiler defined
classes are:

2.2.4.1 DICT — Dictionary

The MINT dictionaries provide the information which causes operation of
the entire system. In order to provide control over the currently known sets
of identifiers the identifier records are composed into distinct dictionaries.
These dictionaries are composed into a list. The list of dictionaries may
be manipulated by referencing dictionary names and by procedures which
are described below. New dictionaries are created by the DICT construct.
The operators \ and % may be used to reference a named dictionary. The
dictionary list may also be referenced by use of the MINT list operators.
Pointers into the list structure control the way in which the various dic-
tionary manipulations are carried out. Thus, it is possible to select which

18 Machine-Independent Organic Software Tools

dictionaries are searched and which dictionary is used for introduction of
new identifiers.

2.2.4.2 PRIM — Primitive

A set of operators (or primitives) is defined in the class primitive. These
are the Virtual Machine instructions. Each identifier in this class causes the
compiler to generate a single Virtual Machine instruction. Each Virtual
Machine instruction is represented by a unique number between 1 and
80. Chapter 6 introduces the basic primitives, while Chapter 13 gives a
full description of the instruction codes, formats, and operation of each
primitive. Section 13.6 contains a Table of all compiler defined primitives.
It is straightforward to introduce a new primitive at any time. However,
the Virtual Machine must be extended so that it will correctly execute the
new primitive instruction. For this reason primitives are more static than
other classes.

2.2.4.3 DIR — Directive

A directive is a procedure which is performed when the compiler encounters
a reference to its identifier. Parameters may be passed to a directive by
means of the IPAR mechanism, as described in Section 8.2. The set of
directives defined initially within the compiler determines the compiler’s
standard actions. These initial directives may be manipulated in exactly
the same manner as directives defined within user text.

2.2.4.4 FN — Function

A function is a procedure which is performed when a reference to its iden-
tifier is encountered by the Virtual Machine. Functions may have parame-
ters which are passed by means of the operand stack. A referenced function
normally returns control to the point of reference by means of the EXIT
primitive.

Functions and directives are both procedures which are defined and
written in exactly the same manner. However, a reference to a function
results in compilation of a reference to the function, whereas a reference
to a directive causes the compiler to execute the directive immediately.
A mechanism also exists which defers execution of a directive so that the
directive is treated as a function.

MINT Language Components 19

2.2.4.5 MACRO — Macro

The identifier class macro provides the means of identifying strings which
are to be used as compiler source input when a reference to the macro name
is encountered. At the end of macro string processing the compiler resumes
processing of the previous input stream. Due to the structure of MINT, no
special indicators are used to indicate macro references or arguments.

2.2.4.6 ICON — Constant

A constant is a fixed numeric quantity. It may be named or it may be a
literal (i.e. anonymous) value. Literal constants are used in contexts where
the object need not be referred to by a name. Constant values are composed
of a sign and a 31-bit integer.

2.2.4.7 VAR — Variable

The identifier class variable is used for single word objects such as arith-
metic variables, counters, or address values. Variables, like constants, are
treated as being composed of a sign and a 31-bit integer.

The means of implementing this arithmetic definition may vary some-
what depending on the host system. Programming which depends on over-
flow effects or on the characteristic features of one’s- or two’s-complement
arithmetic should be avoided.

2.2.4.8 LAB — Label

The identifier class label is used to name storage addresses. When a label
is set its address value is set to the value of the currently active location
counter (DLOC or PLOC).

2.2.5 Summary of Class Characteristics

The following Table gives the action carried out by the compiler for each of
the contexts in which an identifier can occur, and for each of the compiler
defined classes.

20 Machine-Independent Organic Software Tools
Table 2-1 Class Characteristics
Class Action
Syntax Assignment Generative
CLASS identifier set DATA GET (label)
introduction
DICT procedure set DATA procedure
references reference
PRIM shunt none operation
code
DIR procedure set PROG none
reference
FN shunt set PROG procedure
reference
MACRO switch set DATA GET (macro)
input
ICON shunt none GET (constant)
VAR shunt set DATA GET (variable)
LAB shunt none GET(label)

The shunt action consists of saving a record of the identified object.
These records are saved on a shunt stack so that they may be processed by
the generative procedure according to the precedence rules (as discussed in

Section 4.9).

The compiler operates in one of two states, program state or data state
(See Section 4.7.1). The set PROG and set DATA assignment actions cause
the compiler to perform the following;:

1. The compiler state is set to generate subsequent text into procedure-
space (program state) or data-space (data state) respectively.

2. The current location counter value of the appropriate space is asso-
ciated with the identified dictionary record as its address value. The
generative action causes the data value associated with the dictionary
record to be generated into the next word of storage as controlled by
the currently active compiler state. If the active state is program, a
GET or GETYV instruction (See Section 6.2.1) will be generated.

MINT Language Components 21

2.3 Identifiers

An identifier consists of any sequence of characters from the ANSI character
set including blanks and other special or control characters. An identifier
names a constant, variable, label, macro, function, directive, primitive, or
other class object. Thus,

a
A

aa

aA

ab

abc

X

123-

$x 69%

are all valid identifiers.

2.3.1 Identifier Matching

When the compiler scans characters from the input stream it accumulates
the characters, attempting to match the resulting string with a dictionary
entry. This matching is attempted after each character is read. If no match
occurs by the point at which the end-of-name (See Section 2.3.3.1) condition
occurs, the unmatched identifier error condition is indicated and reading
of input restarts with the next line of source text. Otherwise, if a no match
occurs another character is read and the match attempt is repeated. If
a match occurs, the next character is read and a match attempt is made
using this longer string. If this match succeeds another character is read and
the match attempt is repeated. If this match fails the previously matched
string is accepted as an identifier. Thus, the longest matching string is
always found. If a, aa, and aaa have each been introduced each will be
recognized.

If compiler defined identifiers are embedded in other identifiers then
some constructions may not produce the superficially apparent results. For
example,

VAR ab . introduce the variable ab
VAR ab+ . introduce the variable ab+

will have the effect that an expression such as

22 Machine-Independent Organic Software Tools

ab-+c

will be interpreted as a reference to ab+ followed by a reference to c. The
+ operator will not be recognized. It is also possible that an unintended
construction will cause the compiler to recognize a directive and, therefore,
perform some unexpected action. The effects of such action may not be
apparent immediately. It is easy to see that the generality of identifier
construction is a powerful tool, but one that must be used with care.

2.3.2 Identifier Manipulation Directives

Identifiers may be created by introduction into the selected class, removed
by means of the FORGET directive, or renamed by means of the RENAME
directive. The syntax for directives which create or remove identifiers is:

directive-name identifier-name

where directive-name is the name of the required directive and identifier-
name is the identifier which is to be acted upon. The syntax for the directive
which renames identifiers is:

RENAME old-identifier new-identifier

where RENAME is the renaming directive, old-identifier is the previous
identifier name and new-identifier is the name which is to be created as a
replacement.

2.3.3 Introducing Identifiers

An identifier must be introduced before it can be referenced in any way. An
identifier does not exist within the system until it is introduced. There are
no default introductions. An identifier is introduced to belong to a defined
class. The identifiers for the standard compiler defined classes (as described
above) are:

CLASS - class

DICT - dictionary

DIR - directive

FN - function

ICON - integer constant
LAB - label

MACRO - macro

VAR - variable.

MINT Language Components 23
Thus, the identifier abc may be introduced as a variable by writing

VAR abc .

Similarly,

FN function

introduces the identifier function as a function, and

LAB begin
introduces the identifier begin as a label.

If an identifier is introduced more than once at a given block level,
(For definition of blocks, see Section 2.3.5) any reference to it is to the
most recently introduced copy. Thus,

FN XyZz
FN XyZ
LAB XyZ
VAR Xyz

has the effect of introducing four identifiers xyz, with any subsequent ref-
erence being to the variable xyz, unless xyz is removed or renamed (See
Sections 2.3.3.2 and 2.3.3.3 below.).

2.3.3.1 Identifier Naming

When an identifier is introduced its name is considered to begin with the
first non-blank character after the class name, and to end when the follow-
ing condition is met:

A blank, colon(:) or carriage-return (C/R) is encountered. A special
input routine is used by the directives which introduce or manipulate iden-
tifier names so that the subject name is read according to the above rule
without any attempted matching in the current dictionary. Thus,

VAR abe def

introduces variable abc and references the identifier def. If it is required to
introduce an identifier with an embedded identifier terminator, the intro-
duction escape character (;) must be used. ;S is replaced by a space and
;CR by a carriage-return (ASNI character code 13). Thus,

VAR abc;Sdef

24 Machine-Independent Organic Software Tools
introduces the identifier:

abc def .

The single blank between c and d is significant and is part of the identifier.
The identifier abcdef does not exist unless separately introduced. The char-
acters 7:” and ”;” may be included in an identifier by applying the escape
character to them. Thus ;: and ;; cause inclusion of : and ; respectively.

2.3.3.2 Removing Identifiers

Identifiers may be removed from the dictionary by means of the FORGET
directive. Thus,

FORGET abc

removes the identifier abc. This facility enables the creation of local iden-
tifiers:

VAR xyz . introduce variable xyz
'text using xyz
VAR. XyZ . introduce new variable xyz
text using new xyz
FORGE’f Xyz . Temove new Xyz

text using xyz

In the above example the first section of text references the introduced
variable xyz. After the second introduction all references to xyz refer to
the new variable xyz. After the FORGET any subsequent references are to
the previously introduced xyz.

Reintroduction of an identifier may be performed to any level, and it
is not necessary that the identifier be introduced in the same class each
time. When an identifier is forgotten only the name is deleted. Program
text or data associated with the identifier are not deleted.

2.3.3.3 Renaming Identifiers

An identifier may be renamed by means of the RENAME directive. Thus,

MINT Language Components 25

RENAME x8$y 1def9

changes the name of the identifier x$y to 1def9. The rules for the new name
are exactly the same as for introducing identifiers. All attributes (class, ad-
dress, etc.) of the new name remain unchanged from the original identifier.
RENAME is a replacement operation. Thus, the original identifier name
no longer exists in the dictionary.

2.3.4 Setting Identifiers

After an identifier has been introduced into the dictionary its dictionary
record exists, but is not complete. At some stage the identifier must be
assigned a location, or an address value, in the object program. This as-
signment process is also referred to as setting an identifier. Directives and
macros may only be referenced after having been set.

2.3.4.1 The Colon(:) Directive

An identifier is assigned an address value by a reference to the identifier
followed by a colon(:). Thus,

abc:
1$De:

func:

cause each of the identifiers which precede the : to be set. Each of these
identifiers must previously have been introduced.

If the identifier is a function (FN) or a directive (DIR) it is assigned
the current location in procedure-space. If the identifier is a variable (VAR)
or macro (MACRO) it is assigned a location in data-space. When a label
(LAB) is set it is assigned a location in whichever area the compiler is
currently operating. This point will be further clarified in the Section on
compiler states (Section 4.7). An identifier defined to be an integer constant
(ICON) is introduced and set without use of the colon directive as will be
explained in Section 2.5.1.

Notice that the use of : is not entirely consistent with the usual ordering
of objects in MINT. The : acts on the object which precedes it, not only
on following objects.

2.3.4.2 The EQV Directive

As noted in the previous Section the colon (:) directive assigns the current

26 Machine-Independent Organic Software Tools

value of one of the compiler’s location counters as the address value of an
identifier. The EQV directive allows any arbitrary value to be assigned as
an identifier address value. The form of an EQV reference is:

identifier EQV IPAR-expression .
Thus, for

x EQV 6

the address value assigned to x is 6, and for

abc EQV (def+10)

the address value assigned to abc is the result of evaluating def+10. The
construction,

x EQV DLOC

is equivalent to

X

if x is a variable or macro.

2.3.4.3 Immediate Setting

The processes of introducing and setting an identifier may be combined, as
in:

VAR X:
FN abcd:
LAB 19x EQV 7.

If this procedure is not used then the identifier must be set by following a reference to

it with either colon or EQV. For example,

VAR x

other text

Note that

VAR x:

MINT Language Components 27
is equivalent to

VAR x x: .

2.3.4.4 The REF Directive

The REF directive is used to prevent the compiler from carrying out its
normal action for identifiers in class DIR or MACRO. A directive name
preceded by REF is treated like a function name. A macro name preceded
by REF is treated like a variable name. One use of REF is to allow flexibility
in setting of identifiers in class DIR and MACRO. Unless directives and
macros are introduced and set immediately, they must be set by use of the
REF directive. The choices are either

DIR X: ENTRY
directive body

EXIT

MACRO z: > body of macro’
or

DIR y

MACRO z
other text

REF y: ENTRY
directive body
EXIT

REF z: > body of macro’ .

REF is also commonly used when it is desired to compile a reference to a
directive so that the directive is executed as part of the execution of the
compiled text.

2.3.5 Local Identifier Blocks

A local identifier block is a section of text preceded by the BLOCK

28 Machine-Independent Organic Software Tools

directive and followed by the ENDBLOCK directive. Any identifiers intro-
duced within the block are automatically forgotten at the end of the block.
For example, consider

BLOCK
VAR
VAR
VAR
VAR
FN

FN

< ®W a0 T

text

ENDBLOCK .

When the ENDBLOCK is encountered a FORGET operation is performed
for each of the identifiers introduced since the most recent BLOCK direc-
tive. Local identifier blocks may be nested to any level, up to the imple-
mentation limit of 100.

2.3.5.1 The SAVBLOCK and SETBLOCK Functions.

The BLOCK and ENDBLOCK directives provide hierarchical scope of
identifiers. The SAVBLOCK and SETBLOCK functions may be used to
remove and reintroduce sets of identifiers at any time. The SAVBLOCK
function operates analogously to the ENDBLOCK directive, but instead of
permanently forgetting the identifiers at the given block level, it links them
into a list whose starting location was provided as the parameter. As with
ENDBLOCK, the block level is decremented by 1. Thus, consider

VAR ss1:0

DIR sl: ENTRY
SAVBLOCK((@ss1), EXIT

BLOCK

FN a

VAR b

sl .

(The construction @ssl generates an address constant as defined in Section
2.5.2.) When the sl directive is referenced, the identifiers introduced after
the BLOCK directive (a and b) are removed from the dictionary and linked

MINT Language Components 29

to location ssl.

The SETBLOCK function operates analogously to the BLOCK di-
rective in that it increments the block level to be used in all subsequent
identifier introductions. In addition, SETBLOCK will take all identifiers
chained to the supplied variable address and reintroduce them into the
dictionary at the new level. Thus,

DIR rl: ENTRY,
SETBLOCK(@ssl), EXIT
rl

will increment the block level and reintroduce the variables a and b.

By using SETBLOCK and SAVBLOCK functions, the set of known
identifiers can be freely manipulated. In particular, sets of identifiers may
be created, and made known within various blocks at arbitrary block levels.

2.4 Internal Compiler Identifiers

Under normal conditions only the identifiers which are described in this
monograph are accessible to programs. However, the compiler contains
many internal procedures which are useful for more advanced program-
ming (such as compiling the compiler). The UNLOCK INTDIC directive
may be used to make these internal identifiers available. The LOCK INT-
DIC directive is used to remove them. The ICL$ and RCL$ directives were
used in previous versions for UNLOCK INTDIC and LOCK INTDIC re-
spectively.

2.5 Constants
A constant is a sequence of digits or characters which have a fixed (con-
stant) value. Constants may be literal (i.e. anonymous) or they may be

associated with an identifier. There are several types of constants as de-
scribed below.

2.5.1 Integer Constants
An integer constant is composed of a string of integer digits. For example,

19

30 Machine-Independent Organic Software Tools

14628
3
18

are integer constants, unless otherwise identified. The magnitude of an
integer constant must not exceed 23! — 1. A negative integer constant is
produced by preceding a string of digits with the directive MINUS. Thus,

MINUS 24

yields the constant value —24. The MINUS directive thus acts as a unary
operator which transforms an integer constant to its negative value. The
MINUS directive must be distinguished from the NEG and - operators
which perform arithmetic on variables. These operators are discussed in
Section 4.8.1.

If a string of digits has been introduced as an identifier then the oc-
currence of that string of digits will be interpreted as a reference to the
identifier and not as an integer constant. Thus, after the introduction

VAR 1234,

1324 is an integer constant,
123 is an integer constant,
1234 is a variable reference.

Identifiers may also be defined as integer constants. The form of such defi-
nition is:
ICON identifier IPAR~expression.

Thus, given

ICON x 5
ICON y MINUS 3

when the identifier x or y is subsequently referenced, it will be interpreted
as an integer constant.

Note that the constructs

ICON x b

and

LAB X EQV 5

yield the same results in most contexts. However, the second construct
is not entirely appropriate for an integer constant since identifiers in the

MINT Language Components 31

class LAB are treated as address constants. If object text is moved from
one VSTORE address to another, all relevant address constants must be
adjusted to the new address base. Such adjustment would not be applied
to identifiers in the class ICON.

2.5.2 Address Constants (@)

An address constant is formed by preceding an identifier with the directive
@ (at-sign). Thus,

@x

forms a constant whose value is the address of the identifier x. The at-sign
is a compiler directive which causes reading of the following identifier and
obtains the address value of the identifier. Thus, the constructs:

VAR xx:2 . line 1
LAB xa EQV @xx . line 2
LAB xv EQV xx . line 3

will have the following results. Line 1 will introduce and set the variable
xx, and set 2 as its data value. Line 2 will introduce the label xa and set
its address value to the address value of xx. Line 3 will introduce the label
xv and set its address value to 2.

Note that since the @ directive reads the following identifier no normal
compiler action is taken as a result. Thus, for instance, if the identifier
following the @ directive were a name of a macro, no macro substitution
would take place. Instead, @ would obtain the address value of the identifier
which would be the address of the macro body. Also note that these address
values are treated as unsigned integers on the range 0 to 232 — 1. Only
address arithmetic operators (ADIFF and FROM, see Section 4.8.3) may
be used on these quantities.

2.5.3 Character Constants (#)

A character constant is a literal whose value is the integer value of a single
character. It is formed by immediately preceding the character with the
directive # (hash) without any intervening blanks. Thus,

#x

yields the integer value of the character x, which is 120. In the expression

32 Machine-Independent Organic Software Tools

#0+6

the integer value of the character 0 is added to the integer constant 6. This
results in the value 54, since the ISO character code value of 0 is 48.

2.5.4 Evaluated Constants (&)

An evaluated constant is the result of an expression which is evaluated at
compile time. The directive & causes evaluation of the following IPAR-
expression. Thus,

&(8 FROM @table)

results in an evaluated constant whose value is the address of the eighth
item after the start of table. (The FROM operator computes address offsets
as explained in Section 4.8.3.) This is useful for implementing the practice
known as parametric programming. The following example illustrates this
usage:

VAR table:
table entries

LAB tabend:

The identifier table is set to the address of the beginning of the table and
tabend is set to the address immediately following it. A constant whose
value is the length of the table can be formed by the construction:

&(@Qtabend ADIFF @table)

where ADIFF is the operator which computes the difference between the
two addresses. All identifiers which are used in the construction of an eval-
uated constant must have been both introduced and set prior to such use.

2.5.5 String Constants (* ?)

A string constant is a string (strictly, a string address) which may be refer-
enced as a literal. Such a constant would typically be used as a parameter
to a function which operates on strings (See Chapter 10). For example the
compiler’s string output function OUTST may be referenced by:

OUTST(’string’)

MINT Language Components 33

where the characters between the single quotes form a string constant. The
single quote character (’)! may be included in a string by preceding it
by the escape character, ; (See Section 2.3.3.1 and 10.5.9.). Similarly, the
escape mechanism may be used to include the carriage-return and form-feed
characters in string constants. When an escape character is encountered in
a string and the immediately subsequent character has no defined escape
meaning, the character following the escape is accepted as input. Thus the
sequence ;; may be used to include a semicolon in a string.

Strings may continue over any number of lines. In order to provide
line indentation for readability the following rules apply to continuation of
multi-image strings:

1. A line logically terminates after the last non-blank character.

2. The second and succeeding lines logically start following the first non-
blank character.

3. The string is terminated by a closing quote in the normal manner.

Thus,
"This string
’ is continued on
” several input
> lines.” .
results in the string:

This string is continued on several input lines.

2.6 Diagnostics

Due to the flexibility of expressions in MINT there are few diagnostics
which result from improperly formed expressions. In general, input which
is not in the form which was intended results in recognition of an undefined
identifier. The only specific syntactic error is the use of a closing parenthe-
sis which is not matched by an opening parenthesis. The complete set of
diagnostics is described below.

2.6.1 Undefined Reference

If at any time the identifier end condition occurs (See Section 2.3.3.1.) and

I The intended quote symbol is usually shown on a keyboard as the right
single quote ’ shown as a vertical quote, but some keyboards may show the
symbol differently.

34 Machine-Independent Organic Software Tools

no match has been found in the dictionary and the characters do not form
an integer constant, then a diagnostic will be printed. After this condition
is recognized the compiler executes the . directive so that any remainder
of the current line is discarded. Normal compilation continues at the next
line.

2.6.2 Identifier Reset

If the compiler encounters the identifier setting action for an identifier
which has already been set it prints a warning diagnostic to indicate this
fact. The identifier is reset, i.e. the setting action is performed.

2.6.3 Unmatched)

The compiler records the level of nesting of parentheses. Each opening
parenthesis increments the level and each closing parenthesis decrements
the level. If a closing parenthesis is encountered when the level is zero a
diagnostic is printed and the closing parenthesis is otherwise ignored.

2.6.4 SAVBLOCK/ENDBLOCK with no Active Block

The SAVBLOCK and ENDBLOCK functions can only be used within the
scope of a BLOCK. If the current block level is zero a diagnostic is printed
and the function is EXITed without any other action.

2.6.5 Storage Overflow

Available storage may be exhausted when data-space or procedure-space
are no longer available, or when the data-space and free-space areas overlap.
For both conditions, corrective action requires a knowledge of the amount
and structure of storage for the particular implementation that is being
used. Chapter 14 gives the details of storage configuration.

2.6.5.1 End of Store

If a condition arises such that the compiler is requested to store data into a
location whose address exceeds the highest configured data storage address,
a diagnostic is printed and an ESTOP instruction is executed. Likewise,
if the compiler is requested to generate object text into procedure-space
which exceeds the upper limit of procedure-space (N,), a diagnostic is

MINT Language Components 35

printed and an ESTOP instruction is executed.

2.6.6 End of Free-space

If a condition arises such that a NEXTFREE function (See Section 9.4.1)
cannot be satisfied due to lack of available memory, a diagnostic is printed
and an ESTOP instruction is executed.

2.7 Problems

2.7.1 Problem 1

Define identifier introduction and identifier setting. State reasons why in-
troduction and setting are separated. Give specific examples for variables,
functions, labels, and directives.

2.7.2 Problem 2

Write the MINT text to introduce a variable abc, a label LABELS, and a
directive CR-LF.

2.7.3 Problem 3

If a variable identifier abc has been introduced, explain how LAB abc will
be treated. Why is abc not recognized as a variable identifier in this case?

2.7.4 Problem 4

What characteristics distinguish the use of literal constants from the use
of identified objects?

2.7.5 Problem 5

After the sequence VAR 15:25, FORGET 15 how would a reference to 15
be treated? What happened to the data allocation for the value 257

36 Machine-Independent Organic Software Tools

2.7.6 Problem 6
Construct a data table structure which contains 5 entries with each entry

made up of 3 items using parametric programming so that the number and
length of the entries may be varied.

2.7.7 Problem 7

Convert the text of this problem into a MINT string whose name is prob2-7.
Use more than one line to express the string.

2.7.8 Problem 8

Write text which will cause the undefined reference diagnostic to be printed.

3. Program Listing Control

3.1 Introduction

MINT source text is free-format. Thus, the programmer may arrange the
source language in a manner that is most convenient in terms of input and
listing facilities, updating, and readability. It is standard practice to decide
on a layout for the source language that tends to display the logical flow of
the program in a consistent and readable manner. Indentation, pagination,
and spaces between meaningful sections of text are often used for these
purposes.

To aid in the orderly presentation of compilation output, directives are
provided which control choices of listing output, page formatting, and page
titles.

3.2 Listing Options
Four listing control directives are available:

LIST
LOCS
LCODE
NOLIST

The directive LIST causes each input image to be displayed during com-
pilation, prefixed by its line number. The line number is displayed as two
fields, separated by a period. The first field is the current value of STUNIT
(See Section 10.5.1). The second field is the line number within the file
associated with the current SIUNIT (i.e. the file named on the current SI
directive). The directive LOCS (which usually follows the LIST directive)
causes the display line to be expanded to include the location counters
along with the line number and text. The procedure-space location counter
is displayed first followed by the data-space location counter. The counters
are only displayed if the value has changed from the previously displayed
value. Since the floating process, described in Section 4.6, can apply across
input images, the values of these location counters cannot be taken to be
exact. The displayed value is the value which is current when the image is

38 Program Listing Control

read. However, at this point text from previous lines may not have been
generated. Thus, the displayed values may be somewhat ”behind” the lo-
cation of the text. The LOCS directive has no effect if the LIST option has
not been selected. The LCODE directive causes display of the generated
VM(M) object text which results from each input line. Again, due to the
floating process, an identifier in one line may appear in the generated ob-
ject text for a subsequent line. In order to ensure correct sequencing of the
compilation output, the directive LOCS must precede LCODE if both are
used. Thus,

LIST LOCS LCODE

will cause listing of the input images, the data and program location coun-
ters, and the generated VM (M) object text. The NOLIST directive disables
all listing options.

3.3 Comments and Pagination

If the period (.) directive is referenced in an image, its effect is to cause
the compiler to disregard all following text in that line image. The full line
image is displayed if the LIST directive has been previously referenced. The
period symbol may, of course, be used freely in any context such that it is
not recognized as an identifier.

The PAGE directive causes the compiler to skip to a new page in the
output listing if any listing options are in effect, and to display any TITLE
information at the top of the new page. The directive itself is displayed on
the current page.

3.4 The TITLE Directive

The TITLE directive permits source listings to be formatted as titled pages.
Each page consists of a header image and a variable number of lines. The
header image consists of a text string, a page number, the current date, and
the current compiler level. The TITLE directive requires three parameters:
the number of lines to be displayed per page, the initial page number, and
the address of the header text string. Thus, the sequence:

VAR x: "Header message.’
TITLE (52,1,@x)

will cause the string "Header message.” to be displayed at the top of each
page. Pages will be sequentially numbered starting with number 1, and

Machine-Independent Organic Software Tools 39

each page will contain up to 52 lines of text.

If the specified page number is zero, the existing page number will
remain in effect. If the first parameter is specified to be zero, the display of
page headings is discontinued, and the NOLIST directive is referenced. The
TITLE directive automatically references the LIST, then PAGE directives.
It does not reference LOCS nor LCODE.

3.5 Problems

3.5.1 Problem 1

Write the text which would initiate titled, page-formatted listing, skip two
pages, and discontinue the listing.

4. MINT System Structure

4.1 Introduction

This Chapter describes the organization of the MINT system, basic proper-
ties of the compiler, and the definition and manipulation of MINT language
expressions.

4.2 Basics of the VM (M) Virtual Machine

This Section gives a very brief introduction to the VM(M) Virtual Machine.
This introduction is sufficient for understanding of basic MINT program-
ming. The full definition of the Virtual Machine is given in Chapter 13.

4.2.1 VM(M) Stacks

A stack is an area of storage which functions as a push-down list. The stack
pointer is the address of the top item on the stack. The stack must always
be addressed through the stack pointer. When an item is added to the stack
the previous item is pushed down and the new item becomes the top one
on the stack. If the top item is removed, the previous item becomes the top
item. The verb obtain is used to refer to pushing, or adding, an item on
the stack. An item which is removed from the stack may be referred to as
having been popped from the stack. The items which are manipulated on
the stack are referred to as objects.

The VM(M) Virtual Machine contains two stacks, one for procedure
linkage and one for operands. Operands are the objects on which VM (M)
instructions operate. They are also used as the parameter mechanism for
procedures. Thus, the same construction is used to provide the arguments
for VM (M) instructions and for procedure parameters. The operand stack
is central to all levels of the MINT language.

42 Machine-Independent Organic Software Tools

4.2.2 Instruction Operation

The instructions of the VM (M) Virtual Machine operate entirely in terms
of objects obtained on a stack. There are five basic instructions which ref-
erence Virtual Storage. These are used to obtain objects on the operand
stack, to store the top object on the operand stack into Virtual Storage,
or to increase by one the value in a Virtual Storage location. The string
manipulation instructions also reference Virtual Storage based on the infor-
mation on the operand stack. All other instructions manipulate the objects
on the stack without referencing Virtual Storage. This instruction organi-
zation tends to minimize the frequency of Virtual Storage references. In
addition, it minimizes the number of points at which Virtual Storage refer-
ences may occur. This facilitates control over the addressing of, and access
to, Virtual Storage.

This form of machine instruction architecture is termed zero-address
architecture, as the instructions do not contain storage addresses. Using
this architecture, a section of object program to add the two quantities a
and b would appear as:

e Obtain the object a
e Obtain the object b
e Perform the addition operation.

The operation of addition is logically performed in the Virtual Machine in
the following manner:

e Pop the top item from the stack
e Pop the next item from the stack
e Add the two popped items

e Push the result onto the stack.

Hence the Virtual Machine operation of addition will remove two items
from the stack and return one item which is the sum of the two removed
items. The sequence:

e Obtain a
e Obtain b
e Add

is standard reverse-Polish notation. Using this zero-address architecture,
items may be stacked to any level to effect a desired result. For example
the expression a + b * ¢ is generally interpreted as meaning add a to the
product of b and c. This is expressed in reverse Polish as:

MINT System Structure 43

1. obtain a
2. obtain b
3. obtain ¢
4. multiply
5. add

After operation (3) has been performed three objects are present on the
stack: ¢ at the top, then b and then a. After operation (4), which functions
much as the addition operation, there are two objects on the stack: The
quantity a at the bottom, and the quantity resulting from the operation
b x ¢ at the top. The add operation (5), as previously described, removes
these two objects, sums them, and returns to the stack the resulting object
whose value is a + b * c.

A basic function of the compiler is to generate from source expres-
sions the reverse-Polish sequences which are required for evaluation by the
Virtual Machine.

4.3 Compiler Operation

The compiler translates source text into VM(M) object text. MINT source
text may be written at various levels. Thus, the work done by the compiler is
also variable. If the source text is at the lowest level, and thus contains only
simple data variables, constants, and VM(M) instructions, the compiler
only assembles the instructions in correct sequence and assigns and sets
storage addresses and contents. If higher level constructs are used, the
compiler references directives or macros as the names of these are identified
in the input stream in order to modify the translation result or to modify
the actual input text. Eventually, the input is reduced to the lowest level
form. This is then translated into VM(M) object text in Virtual Memory.
Thus, the compiler may be made to operate in a manner, and at a level,
similar to a conventional assembler, or it may be made to operate at a
very high level where objects with new or complex structure are defined
and referenced. The structure of the MINT system tends to encourage high
level use.

4.4 The Dictionary Facilities
The dictionary system determines all MINT behavior. Manipulation of the

list of dictionaries provides flexibility in the transformation of information.
An important example of the use of dictionaries is their use in “auto-

44 Machine-Independent Organic Software Tools

compiling” the MINT compiler itself. The dictionary system starts with
the use of the class DICT.

4.4.1 The CLASS DICT

Class DICT is used to introduce a new dictionary. Its form is:

DICT <dictionary name>

After introduction the dictionary is set by:

<dictionary name>: HDICT

where HDICT is a macro that builds the data structure required for a dic-
tionary. Typically, a dictionary will be introduced and set by, for example:

DICT DC1: HDICT

After a dictionary name has been introduced and set it may be referenced,
much like a DIR. Referencing a dictionary name causes that dictionary to
become the current active dictionary. If the dictionary had not previously
been referenced, it is initialized and pushed onto the dictionary list (see
below). The compiler’s dictionaries, MAINDIC and INTDIC, may be ref-
erenced in this way. However, it is recommended that the user introduce
and use his own dictionaries. Thus,

DICT DC1: HDICT
DICT DC2: HDICT

: text section 1
DC1
: text section 2
DC2
: text section 3
DC1

will have the following effects:

1. The two new dictionaries DC1 and DC2 are created. Within text sec-
tion 1 new introductions are made into the dictionary that was previ-
ously active.

MINT System Structure 45

2. Within text section 2 new introductions go into dictionary DCI.
3. Within text section 3 new introductions go into dictionary DC2.

4. After the last line (DC1) operation continues using DC1 for introduc-
tions.

4.4.2 The \ and % Operators

Two operators permit transient use of dictionaries, i.e. the dictionary name
which follows the operator is used once and then the dictionary structure
is returned to its previous state. The two operators are \ which causes
identifier lookup in the specified dictionary, and % which introduces an
identifier into the specified dictionary. Thus,

DICT DC2: HDICT
DICT DC4: HDICT
DC2
VAR DCVAR:25
DC4
VAR DCVAR:50
FN FF: ENTRY
\DC2 DCVAR ->Q@TEMP
EXIT

is a function which would generate text to obtain the the value of DCVAR
in dictionary DC2 even though dictionary DC4 would normally have been
searched first. The % operator directs introduction to the named dictionary,
as, for example:

%DC4 VAR DCVARX:75

would introduce the variable DCVARX into dictionary DC4 regardless of
what dictionary was currently active.

4.4.3 The SETDIC Function

This function provides a means of setting a dictionary’s access control. Its
general form is:

SETDIC(<value>, <dictionary address>)

The function sets <value> as the access control for the dictionary whose
address is given. At present the following access controls are available:

46 Machine-Independent Organic Software Tools

Value Meaning

0 dictionary is not used for lookup (locked)
1 dictionary may be read or written

2 dictionary is read-only (lookup only)

Thus, for example: SETDIC(0, QINTDIC) will exclude INTDIC from sear-
ches, and SETDIC(1, QINTDIC) will return it to read/write state so that
it will be searched. For some purposes it is more convenient to lock a
dictionary rather than to remove it from the dictionary chain. SETDIC may
be applied to any dictionary regardless of whether it is in the dictionary
list. New dictionaries are always initialized as read/write.

4.4.4 The LOCK, RD-ONLY, and UNLOCK Directives

These three directives reference NEXTELT, then SETDIC to set the re-
quested dictionary state. Each requires a dictionary name as its argument.
LOCK makes the dictionary entries no longer visible, UNLOCK makes
them visible, and RD-ONLY prevents the dictionary from being updated.
UNLOCK INTDIC is the replacement for ICL$ and LOCK INTDIC is the
replacement for RCLS.

4.4.5 The LASTDIC Function

This function provides a means of setting the point at which the search of
the dictionary list should be terminated. LASTDIC expects the top item
on the stack to be the address of a dictionary in the dictionary list. This
pointer is saved so that subsequent dictionary list searches stop after the
dictionary whose address was provided.

4.4.6 The ICL$ and RCLS$ Directives

The RCL$ directive performs a SETDIC(0, QINTDIC), and ICL$ performs
a SETDIC(1, QINTDIC). Thus, RCL$ is equivalent to LOCK INTDIC and
ICL$ is equivalent to UNLOCK INTDIC. These directives are included to
maintain compatibility with MINT-2.

4.4.7 Notes on Dictionary Manipulation

There are two important points to keep in mind when managing multiple

MINT System Structure 47

dictionaries. First, each dictionary record contains a pointer to the dictio-
nary record for its CLASS. Therefore, items of class CLASS should not
be introduced into dictionaries which are then subsequently removed if
identifiers of that class are also introduced into other dictionaries which
are retained. There is no check that a CLASS pointer still points to the
intended dictionary item. Second, if multiple introductions of the same
identifier are made it is important to ensure that the point at which the
identifier is inserted and the dictionary search order are such that the in-
tended identifier is found. A prominent situation in which this could be
a problem is the introduction of identifiers which are the same as ones in
INTDIC after an UNLOCK INTDIC directive. The new identifier will be
inserted in MAINDIC, which is searched after INTDIC.

When the compiler is initialized it creates and references a dictionary
named USERDIC. Unless there is some special reason to do so, it is better
not to introduce new identifiers into the compiler dictionaries, MAINDIC
and INTDIC.

4.4.8 The Dictionary List

The dictionaries that are in current use are members of the list whose
list pointer is ENVLIST. Dictionary addresses may be pushed and popped
from this list either directly or by using the directives described below. In
addition there is a pointer to an item in the dictionary list which determines
the dictionary into which new definitions are added. Initially, this pointer
points to the top item in the list.

The dictionary structure after compiler initialization is:

ENVLIST) 0
QINTDIC @MAINDIC
(locked) (open)
ENVSTRT N
LASTDICP

A\

Figure 4-1. Initial Dictionary List

48 Machine-Independent Organic Software Tools

The items in Figure 4-1 are defined as follows:

ENVLIST Pointer to start of dictionary list. All dictionary searches
start at the dictionary pointed to by ENVLIST.

ENVSTRT Pointer to current active dictionary. All new definitions are
inserted into this dictionary.

LASTDICP Pointer to the last dictionary to be searched. Setting LAST-
DICP to a dictionary before the last in the list permits
searches of “windows” of dictionaries.

4.4.9 BLOCK and ENDBLOCK

The BLOCK directive performs the following operations:

1. A new dictionary is allocated, initialized to be empty, and pushed onto
the dictionary list.

2. The current active dictionary pointer is saved on a stack and the active
dictionary is set to the top of the dictionary stack.

3. The address of the new dictionary is saved in an internal list.
The ENDBLOCK directive performs the following operations:

1. The top address is obtained from the list used in BLOCK. This dictio-
nary is removed from the dictionary list. Note that the last dictionary
created by a BLOCK directory is the one removed regardless of any
dictionaries that may have been pushed onto the dictionary list by
other means.

2. The top item on the active pointer stack is obtained and the active
dictionary pointer is reset as it was before the previous BLOCK direc-
tive.

3. The record space used by the dictionary records and dictionary index
table is released.

These actions have the effect that a BLOCK/ENDBLOCK sequence is
transparent in the sense that the dictionary list and pointers are put back as
they were before the BLOCK directive, but any non-BLOCK changes to the
dictionary list are preserved. Thus, specifically, a dictionary may be added
by PUSHNDIC or PUSHODIC after a BLOCK directive and it will remain
in the dictionary list after the following ENDBLOCK. For example, if the
dictionary list was as shown in Figure 4-1 and then a BLOCK directive
was obeyed, the list would be:

MINT System Structure 49

ENVLIST 0
QINTDIC @MAINDIC

ENVSTRT _,
LASTDICP .

Figure 4-2. Dictionary List after BLOCK

4.4.10 SAVBLOCK and SETBLOCK

The SAVBLOCK function acts exactly like ENDBLOCK except that the
dictionary address is stored at the address provided on the stack and the
dictionary records are not released. The SETBLOCK function acts exactly
like BLOCK except that the dictionary whose address is pointed to by
the address on the stack is pushed, rather than pushing a newly initialized
dictionary. Thus,

VAR SAVDIC:0
FN SAVRES:ENTRY, SAVBLOCK(@SAVDIC), SETBLOCK (@SAVDIC),
EXIT

would perform an ENDBLOCK, but then save the dictionary address in
SAVDIC, and perform a BLOCK, but restoring the dictionary as the new
top item.

Note that SAVBLOCK does not “accumulate” dictionary records as
was the case in previous versions of MINT. In MINT-2 a SAVBLOCK of a
directory using the directory address of a directory which already contained
entries would result in a merge of the old entries with the new entries. In
MINT-3 SAVBLOCK simply saves the named directory.

4.4.11 Example use of UNLOCK INTDIC

The example below shows the list for the case where the compiler has been
initialized and then an UNLOCK INTDIC directive has been obeyed.

50 Machine-Independent Organic Software Tools

ENVLIST SN 0
@INTDIC Q@MAINDIC
(open) (open)
ENVSTRT >
LASTDICP >

Figure 4-3. Dictionary List after UNLOCK INTDIC

The UNLOCK INTDIChas the effect that INTDIC and MAINDIC are
searched when an identifier is matched, but new definitions are inserted in
MAINDIC. Note that the requirement to match the longest string means
that the entire dictionary list must be searched on all matches.

4.4.12 The Compiler Dictionaries

The dictionary MAINDIC is the base dictionary for the system. It contains
the standard set of identifiers. Without this dictionary none of the normal
MINT identifiers can be matched. While a POPUP(QENVLIST) will pop
this item if it is the only dictionary in the list, this is not a good idea in
most cases. When the compiler is initialized the dictionary list pointers are
set as shown in Figure 4-1.

4.4.13 Compiler Dictionary List Manipulation

4.4.13.1 PUSHNDIC
This function allocates a new dictionary, initializes it to an empty state,

pushes its address onto the dictionary list, and returns the address on the
stack. Note that PUSHNDIC does not modify ENVSTRT.

4.4.13.2 PUSHODIC

This function expects a dictionary address on the stack. It pushes this

MINT System Structure 51

address onto the dictionary list. Note that PUSHODIC does not modify
ENVSTRT.

4.4.13.3 POPDIC

This function pops the top dictionary address from the dictionary list and
releases the dictionary and record space. Note that POPDIC does not mod-
ify ENVSTRT.

4.4.13.4 ACTDIC

This function sets the active dictionary pointer, ENVSTRT, to the dictio-
nary whose address is supplied on the stack. Identifiers are always intro-
duced into the active dictionary.

4.4.14 Definition of Dictionary Records

Figure 4-4 shows the structure and contents of the dictionary records. These
records are the core of the system. They can be changed as needed, but
this should be done with care in order not to prevent correct operation of
the existing compiler functions.

Machine-Independent Organic Software Tools

DICLIST REC DIC REC
DIC —f < DSHUNT CLASS REC
DICHASH DSTATUS syntax
HASH TBL gen
DICDLM DICP DCLASS
DICDLST DADDR set
CUR
DICNMR DLINK
DICACCS DNAME
DICACTR - (next record)
DICTREE : : - OBJ REC
>DICSIZE ! ! o
I I
I I
I I
I I
I I
e — |
Example Records:
CLASS: VAR LAB FN
CLASS REC OBJ REC OBJ REC OBJ REC
IDINTRO SHUNT SHUNT SHUNT
LABGEN VARGEN LABGEN FNGEN
SETDATA SETDATA NULL SETPROG
VAR XYZ FN FUNC
CLASS REC OBJ REC CLASS REC OBJ REC
SHUNT values SHUNT function
VARGEN FNGEN text
SETDATA SETPROG

(Records of CLASS VAR)

(Records of CLASS FN)

Figure 4-4. Dictionary Record Structure

MINT System Structure 53
4.4.15 Dictionary and Identifier Displays

The LV$ directive has been modified so that it displays the identifiers in
each of the dictionaries in the current list from ENVLIST through LAST-
DICP. It also lists the dictionary name and count of items for each dictio-
nary. The new directive, OBJ, provides a convenient means to display the
identifiers in a given dictionary. (see below.)

4.4.15.1 Display of Objects

The directive LISTDICS lists the name and item count for each dictionary
in the current list from ENVLIST through LASTDICP. The directive OBJ
<object name> lists the properties and body of any object whose CLASS
is known within the compiler. Specifically, if the object is a FN or DIR the
object text will be displayed, and if the object is a DICT, the identifiers in
that dictionary will be displayed.

The directive CURDIC will display the identifiers in the currently
active dictionary.

The directive PREVDIC will display the identifiers in the “previous”
dictionary. One the first use of PREVDIC, after a use of CURDIC, it
will display the contents of the dictionary previous to the current active
dictionary. If PREVDIC is referenced again, it will display the contents of
the next previous dictionary. Further references provide displays of further
dictionaries until the end of the dictionary list, at which point the cycle
will repeat.

4.5 Use of NOW and PDUMP

Note that since NOW references BLOCK and since BLOCK pushes a new
dictionary onto the dictionary list, constructs like:

NOW PDUMP('SAVE’), GO 32768 !

are not a very good idea since an extra dictionary will have been left on
the list due to the fact that the ENDBLOCK in ! is not executed. For
this reason a directive, CDUMP, is available (See Section 6.6.5). CDUMP
expects two arguments which are the filename for the PDUMP and the
address to which to transfer on reload. If this address is 0 a normal EXIT
is taken on reload. Thus, a standard means of creating a PDUMP of the
compiler is:

54 Machine-Independent Organic Software Tools

CDUMP *COMP’ 32768

4.6 Auto-compilation Facilities

Compilation of the compiler by the compiler is accomplished through use of
the dictionary manipulation facilities and a few utility routines contained
in the file MINTAUTO.

4.6.1 The Dictionary List during Auto-compilation

The text in MINTAUTO introduces and sets two dictionaries, MAUTO
and TAUTO. When the AUTO directive is referenced the active dictionary
is set to MAUTO. TAUTO is referenced in the text when it is required
to introduce identifiers in the compiler internal dictionary. Thus, for the
auto-compilation process MAUTO and IAUTO correspond to MAINDIC
and INTDIC respectively. The GENSY'S directive copies and relocates these
dictionaries into data space and converts them into MAINDIC and INT-
DIC.

4.6.2 OLDIC

During auto-compilation a variable, BASESTRT, is used to control the
point in the dictionary list at which identifier searches are started. BASES-
TRT is set to point to INTDIC. OLDIC does a lookup starting at BASES-
TRT. This causes previously defined identifiers (introduced in INTDIC or
MAINDIC) to be found through OLDIC lookups, but new identifiers to be
inserted and matched in MAUTO or TAUTO.

4.7 Compiler States and Data Declarations

The following Sections explain the management of procedure-space and
data-space, and the allocation of reserved storage.

4.7.1 States

During the compilation of MINT source text the compiler is in one of two
states, namely program or data. In program state all source text is com-
piled into procedure-space in a form suitable for execution by the Virtual
Machine. Program state is entered initially when the compiler is loaded,
and also when an identifier of class FN or DIR is set by means of the :

MINT System Structure 55

operator. The compiler automatically maintains the current end address
pointers for procedure-space and data-space.

Data state is set when an identifier of class VAR or MACRO is set
by means of :. In this state source text is compiled into data-space and
is usually non-executable. In data state, constants may be expressed and
identifiers referenced. In the latter case the address of the identifier is com-
piled just as if the identifier name had been preceded by an at-sign (Q@).
(See Section 2.5.2 for definition of the @ directive.) For example:

VAR x:0

introduces the variable x and sets its address value to the next available
data location. The value 0 is compiled and generated into this data location.
The pointer to the next available data location is incremented by one.

VAR cde: 26 49 51

introduces and sets the identifier cde and compiles three consecutive values
26, 49 and 51 beginning at the address assigned to cde. The data pointer
is incremented by three.

VAR table: x cde 0 18 &(2x(a-b))

introduces and sets the variable table and stores in successive locations the
addresses of the identifiers x and cde, the values 0 and 18, and a constant
whose value is the evaluation of the expression 2x(a-b) (See Section 2.5.4
for constant evaluation rules).

VAR text: *This is text.’

introduces and sets the variable text and stores the string

This is text.

The compiler is usually able to select its state automatically. It is
possible to set the state explicitly by the directives PROG and DATA.
These directives may be used when it is desired to change the state and
the appropriate class of identifier is not being set at the time.

4.7.2 Data-space and Procedure-space

The default arrangement of data-space and program space is shown in Fig-
ure 1-2. The sizes of these spaces are controlled by MAXDS$ and MAXPSS,
which are shown in Table 13-1. The default values set in these variables are
described in Section 14.3. MAXDS$ and MAXPS$ are used to set MAX-

56 Machine-Independent Organic Software Tools

PLOC and MAXDLOC when the compiler is initialized.

If other areas of the virtual memory are to be used, the start address
should be set in PLOC or DLOC and the upper limit address should be set
in MAXPLOC and MAXDLOC. After PLOC and DLOC are reset, further
allocations will take place based on the new addresses.

The total size of VSTORE is set by the VM load routine in the variable
MAXVSS$. The value is in units of 1024 VSTORE words. This information
can be used to decide on the use of VSTORE above the MAXDS$ and
MAXPS$ limits.

A directive, VSTOREMAP, may be used to display the layout of VS-
TORE. It provides a display of the form:

VSTORE Usage:
Reserved VSTORE (0-80):

Identifier VSTORE Location
MAXDS$ 00001
MAXPS$ 00002
IDLOC$ 00003
CONT$ 00004
SYSDAT$ 00005
MAXVS$ 00008
EXOPT$ 00009
DREM 00011
DATE 00012
SYSID$ 00021

VSTORE through location 80 is reserved.
System information:

SYSDAT$: 060709

MAXVS$: 16384

DATE: 060709

SYSID$: 3.0
Resources used:

DLOC: 04356, MAXDLOC: 32768

PLOC: 40351, MAXPLOC: 65535
Record POOL from 523264 TO 458752
Item POOL from 458752 TO 393216

4.7.3 Reserving Storage

Storage locations may be reserved by means of the RESERVE directive

MINT System Structure 57
whose form is

RESERVE IPAR-expression .

This directive has the effect of reserving the number of locations specified
by the evaluation of the IPAR-expression. The expression may be any valid
MINT expression as defined by the IPAR-expression mechanism which is
explained in Section 8.2. For example:

RESERVE 30
RESERVE (2#nents)

are valid uses of RESERVE. In the first case 30 words of storage are re-
served, while in the second case the number of words reserved is determined
by the evaluation of (2+nents). The RESERVE directive does not initialize
the reserved space. Therefore, such space must be initialized by the user.

4.8 MINT Expressions

Three distinct forms of expressions are recognized in MINT:

e Arithmetic expressions
e Boolean expressions

e Address expressions.

4.8.1 Arithmetic Expressions

An arithmetic expression is a sequence of MINT identifiers, constants,
arithmetic, logical shift, or binary operators which has the effect of gen-
erating object text which obtains an integer object. The arithmetic and
binary operators are:

+ integer addition

— integer subtraction

* integer multiplication
/ integer division

-—> right shift logical

<= left shift logical

NEG integer negation
MASK binary and

UNION binary inclusive or

58 Machine-Independent Organic Software Tools

DIFFER binary exclusive or

COMPL binary ones complement.
Thus:

a+b—c

is an arithmetic expression. As in many high level languages, the operators
* and / take precedence over + and —, so that the expression

a+bxc

will result in the production of the product of b and ¢, added to a. This
precedence order, which is fully explained in Section 4.9, may be overridden
by use of parentheses. Thus,

(a+b)*xc
has the effect of summing a and b and then multiplying the result by c.

The logical shift operators expect two operands, first a word which is
treated as a 16-bit logical quantity and second the shift count. Thus,

a-—> 4

will perform a logical right shift of the bits in the variable a by 4 bit
positions. The result is left on the operand stack. Note that these two
operator names are composed of two minus characters and > or <. The
logical shift operators have the same binding power as the binary operators
MASK, UNION and DIFFER.

The unary operator NEG has the effect of negating an integer object.
Thus,

NEG (a),

obtains the negative of the value of the variable a. The NEG operator has
the same high binding power as other functions. (See Section 4.9 for a full
description of binding and precedence.)

The binary operators MASK, UNION, and DIFFER each act on two
operands to produce a single binary result. Thus,

9 MASK 5
yields 4.

The COMPL operator functions like the NEG operator, but it yields
the complement of its single argument. It has the same binding power as
other functions.

MINT System Structure 59

The current MINT system does not carry out type checking on arith-
metic operands. Care should be exercised to avoid constructions which
would have unintended type-inconsistency effects.

4.8.2 Boolean Expressions

A Boolean expression is a sequence of MINT elements whose effect is to
generate object text which obtains a Boolean object. It consists of object
obtaining expressions, relational operators and logical operators. The rela-
tional operators, which may be applied to any kind of object, are:

EQ equal

NE not equal

LT less than

LE less than or equal
GT greater than

GE greater than or equal.

For example if the variable a has a value of 10 and the variable b has the
value 8 then:

a EQ Db yields false
a NE b yields true
a GT b yields true
a LE b yields false.

Logical operators should only be applied to Boolean objects. The log-
ical operators are:

NOT logical complement
AND and

OR inclusive or

XOR exclusive or.

The NOT operator obtains the logical complement of a Boolean object.
Thus, if the expression

aEQDb
yields a true result, the expression
NOT (a EQ b)

will yield a false result. An example Boolean expression is:

60 Machine-Independent Organic Software Tools

(a EQ b) AND (c GT d) .

This expression will obtain a true result if both a equals b and c is greater
than d, while

(xyz GT pqr) OR (g LT 0)

yields a Boolean true if either xyz is greater than pqr or if g is less than
Zero.

4.8.3 Address Expressions

An address expression is a series of MINT elements whose effect is to gen-
erate object text which obtains an address. It consists of integer objects,
address objects and the address operators FROM and ADIFF. An address
object is obtained from an address constant (@ directive) or from a refer-
ence to a label. The address operator FROM obtains an address from an
integer displacement and an address. Thus,

3 FROM @Q@table

is an address obtaining expression which obtains on the stack the address of
the fourth location of table. Negative displacements are effected by negative
integers. For example,

MINUS 3 FROM @buffer
NEG (a+b) FROM @list .

The address operator ADIFF obtains the difference between two addresses.
Thus, for example, the length of a table may be obtained by:

@tabend ADIFF @table .

4.9 Precedence

The reordering of the identifiers which compose expressions is determined
by the precedence associated with each identifier. It is conventional to refer
to identifiers with low precedence numbers as having high binding power.
This means that the identifiers with low precedence tend to stay bound in
their position whereas identifiers with higher precedence tend to be carried
along within an expression. The intent of the precedence scheme is to allow
use of natural ordering for readability, but ensure the required reverse-
Polish sequencing in the resulting object text. In order to see how reordering
operates consider the expression:

MINT System Structure 61

a+bxc->Qd

where a, b, ¢, and d are variables, + and * are the add and multiply
operators, — > is the store operator (See Section 6.2.4), and the @ directive
generates an address constant (See Section 2.5.2). The required reverse-
Polish sequence is:

obtain a
obtain b
obtain c
multiply
add
obtain @Qd
store .

Thus, the required reordering results in the sequence:

abcx*x+ Qd->.

The reordering which generates reverse-Polish sequences is accomplished
by the compiler shunt procedure. As indicated in Section 2.2, syntax ac-
tion is performed when an identifier is encountered on the input stream.
The syntax procedure applies the shunt procedure. The shunt procedure
causes the dictionary item associated with the identifier to be linked at the
top of a list of items for which generative action is pending. This list is
referred to as the shunt stack. The generative procedure is called by the
shunt procedure when a dictionary item is to be removed from the shunt
stack. The shunt procedure causes the reordering of the input stream by
requiring that each new item to be linked onto the shunt stack have the
lowest precedence number of all items currently on the active shunt stack.
If any items exist on the stack which have a lower or equal precedence
number, these items are removed. This causes generative action to be per-
formed for these items. There are two identifiers which modify this basic
logic. When an opening parenthesis is encountered it is unconditionally
pushed onto the shunt stack and is given a precedence number of 1000.
In addition, an opening parenthesis on the shunt stack is treated as the
current stack bottom. Thus, input text following an opening parenthesis
is processed separately from the preceding text. When a closing parenthe-
sis is encountered all items with precedence lower than or equal to 99 are
removed. This ensures that all items up to the last opening parenthesis
are removed. In addition, the closing parenthesis causes removal, without
any generative action, of the opening parenthesis. This causes the items
which were below the opening parenthesis to become available for removal.
The operation of this procedure on the expression given above is shown in
Figure 4-5.

62 Machine-Independent Organic Software Tools

Input Shunt Stack Precedence Generative Action
a a 0
+ + 10 obtain a
b b 0
* * 8 obtain b
+ 10
C ¢ 0
* 8
- > - > 22 obtain ¢
multiply
@d @d 0
- > 22

Figure 4-5. Example Shunt Operation

The Figure shows the state of the shunt stack and any generative actions af-
ter each identifier has been processed. Thus, for example, after the variable
¢ has been processed the shunt stack contains c, %, and +. Since nothing
was forced off of the shunt stack at this point, there was no generative
action taken. The example shown in Figure 4-5 also shows that there may
be items remaining on the shunt stack at the end of an expression. The
comma directive, which has no generative action, has precedence number
99. Therefore, it may be used to force items off of the shunt stack. Comma
is therefore frequently used as an expression terminator. If a comma is
omitted, unintended floating of identifiers may occur. Comma and closing
parenthesis cause exactly the same action except that the closing paren-
thesis also removes the opening parenthesis which marks the current stack
bottom.

MINT System Structure 63

Figure 4-6 clarifies the operation of parentheses and comma, using the
input sequence:

a 4+ SUM(b, cx(d + e)) * f

where a, b, ¢, d, e, and f are variables and SUM is a function.

Input Shunt Stack Precedence Generative Action

0
10 obtain a
0
10
1000
0
10
0
1000
0
10
1000 obtain b
0
10
0
1000
0
10
8 obtain ¢
1000
0
10
1000
8
1000
0
10
0
1000
8
1000
0
10
10 obtain d
1000

a
+
SUM

=
=

=
=

=
=

=
=

=
=

=
=

A‘l_—"_gA ¥~ O e xS % gAO + L4 T 4 T 4
= =

64 Machine-Independent Organic Software Tools

* 8
(1000
SUM 0
+ 10
e e 0
+ 10
(1000
* 8
(1000
SUM 0
+ 10
) * 8 obtain a
(1000 add
SUM 0
+ 10
) SUM 0 multiply
+ 10
* * 8 SUM
+ 10
f f 0
* 8
+ 10
, obtain f
multiply
add

Figure 4-6. Action of Parentheses in Shunt Operation

4.9.1 Precedence Numbers

Table 4-1 gives the precedence numbers for all defined identifiers. These are
the numbers shown in Figures 4-5 and 4-6. EXIT causes a special compiler
action which prevents it from floating. It is therefore not necessary to place
a comma after the EXIT operation.

MINT System Structure 65

Table 4-1. Precedence Number Assignment

Precedence Identifier
number
0 all functions, directives, variables, constants, labels,
and operators other than those listed below
4 MASK UNION DIFFER —— >< ——
8 */
10 + - FROM ADIFF
12 EQ NE LT GT LE GE
14 NOT
16 AND
18 OR XOR
20 CHOOSE
22 — > <=> YES NO GO DO
24 ENTRY EXIT
99 ,)
1000 (

4.9.2 Precedence Manipulation (PRIORITY)

The precedence or shunt factor of each identifier has been moved from the
CLASS record to the identifier’s dictionary record. Due to this change it
is possible to set an operator’s precedence independent of its CLASS. The
directive PRIORITY provides the means of setting precedence. In principle,
precedence could be changed dynamically during processing. The use of
PRIORITY is as follows:

PRIORITY <n> <identifier introduction>

This statement causes precedence <n> to be applied to the following intro-
duction. After the introduction the default priority is reset to 0. Thus, an
example use is:

PRIORITY 4 PRIMOP MASK 15

This is the text used in the compiler to set priority 4 for the operator
MASK, and set its value (operation code) to 15.

4.9.3 Use of Parentheses

It is commonly desirable to modify the natural order of the floating process

66 Machine-Independent Organic Software Tools
described above. As has been seen, the expression:

a+bxc,

yields
abcx*x+

as the multiply operation has a lower precedence number than addition.
The effective order of operations can be modified by enclosing a + b in
parentheses. Any expression in parentheses is sorted entirely on its own
and independently of expressions outside the parentheses. The effect of the
parentheses is to temporarily suspend the current sorting operation. The
text within parentheses is sorted entirely on its own. Thus, the ordering of

(a + b) xc,
is
ab+4c=*

which evaluates a+b first and then multiplies the result by c. Parentheses
may be nested to any depth as, for example:

a *(b + ¢ x(d + e))
which yields

abcecde+ * + x.

Parentheses are also used following a procedure reference in order to
delimit the parameters required by the procedure. Thus, for example, a
function reference could be written as

PROD(X,Y),
which yields

XY PROD .

4.9.4 Use of Comma

Because of the syntactic freedom of the MINT language there is no such
thing as a statement. In MINT programming it is frequently necessary to
indicate the termination of certain text sequences in order that the correct
reverse-Polish sequences can be formed. This is effected by means of the
comma (,) directive, since this directive has higher precedence than any
other operators except the parentheses. While it is not usually necessary to
remember the reordering process in detail, it is important to be aware that

MINT System Structure 67

many operators are floating through an expression, and that the process is
terminated by a comma. Thus,

a+b->Qc,
p*xc+3->Qr,

is an illustration of the correct use of comma. If the comma in the first

line were omitted then the first - would float up to the second one, with
unintended results.

4.9.5 Implied Commas

The compiler facilities for iteration and conditional expressions have com-
mas included in order to avoid the possible floating of operators into the
beginning or out of the end of these expressions. The following compiler
identifiers, which are discussed in Chapter 6, result in implied commas:

THEN
ELSE

<

>

WHILE
START
REPEAT

Additionally the comma action is performed whenever an identifier is set,
with the exception of labels (class LAB).

4.10 Problems

4.10.1 Problem 1

Draw a diagram showing VSTORE, the stacks, stack pointers DLOC and
PLOC, and locations of object text after compilation of the text:

LAB stepl: .

4.10.2 Problem 2

Use a MINT system with LIST LOCS LCODE set in order to investigate
the object text which is created for sample source sequences such as:

68 Machine-Independent Organic Software Tools

(a+ D) *c,
MINUS 3 FROM @buffer .

4.10.3 Problem 3

Verify the precedence ordering of the expression:

a+bxc->Qd.

4.10.4 Problem 4

Verify the precedence ordering of the sequence:

a—+b->Qc
p*xc-+ 3->@Qr

and examine the effect of a comma at the end of the first line.

5. The Macro Facility

5.1 Introduction

MINT macros provide a general means of text replacement. A macro refer-
ence simply causes replacement of the reference by the macro text. There
are no special indicators for references or parameters. Thus, any string
may become a macro reference, and any string may be used as macro text.
Macro references may be nested to any level.

5.2 Macro Bodies

A macro is an identifier that has been introduced as CLASS MACRO, and
is set to a string constant which is the macro body. Thus, the macro x is
introduced and set by:

MACRO x:’This is a macro-body’ .

Any reference to the identifier x directs the compiler to the string, which
is then processed as normal input. At the end of the string, input reverts
to the text following the reference.

5.3 Macro Parameters

Due to the flexibility of MINT expression structure, and the lack of pre-
defined syntactic entities, there is no fixed syntax to indicate parameter
references. The simplest means of achieving the effect of conventional pa-
rameter substitution is through the definition of further macros. Thus,

MACRO x:” SUM(A, paraml), OPINT ’
MACRO paraml: 'BxC’

would result in compilation of the string

70 Machine-Independent Organic Software Tools

SUM(A, BxC), OPINT

when x is referenced.

5.4 MINT System Macros

Several standard MINT constructs are implemented by means of macros.
Two examples of this usage are given here. Conditional expressions and
iteration are also implemented by means of macros. These constructs are
discussed in Chapter 6.

5.4.1 Forward Referencing

The < and > macros provide an anonymous forward referencing mechanism.
For example the sequence:

LAB 1b10
GO 1b10,

1b10:
FORGET Ib10

may be more conveniently written as:

GO <
>
This is because the < and > macros are defined as:

MACRO <’ LAB OUT$ OUTS$,
MACRO >, OUT$:FORGET OUT$ ’

where the < macro introduces the label OUT$ and references it while the
> macro sets the label and then forgets it. This facility may usefully be
employed in data state. For example,

VAR linklist:<1><2><3>0, 4,

compiles a linked list of the items 1, 2, 3, and 4. Figure 5-1 shows the
resulting list structure. See also Chapter 9 for more detailed discussion of
lists.

The Macro Facility 71

linklist — > > > 0

Figure 5-1. Linked List Constructed with <>

Note that the label OUT$ may be referenced within the <. ..> construction.

5.4.2 Backward Referencing

A facility analogous to the < and > forward referencing mechanism is pro-
vided by the WHILE and BACK macros for backward referencing. These
macros are defined as:

MACRO WHILE:,LAB LOOP$:’
MACRO BACK:LOOPS$, FORGET LOOP$’

Thus a loop may be written as:

WHILE

GO BACK,
The label LOOPS$ may be referenced within a WHILE ... BACK construc-

tion.
5.5 Some Additional Macros
In this Section we describe four simple macros which have been found

generally useful. These can easily be included in a standard system using
the techniques described in Sections 12.2; or 14.6 and 14.7.

5.5.1 Loop Iteration

It is often required to iterate a given sequence a predetermined number of
times. The following two macros facilitate this kind of iteration using the

72 Machine-Independent Organic Software Tools
following construction:

count TIMES text ... LOOP

where:

count is an expression which obtains the desired iteration

count,

TIMES is a macro which provides the WHILE ... START
sequence,

text... is the sequence which is to be iterated,

LOOP is a macro which terminates the WHILE loop.

An example use of this iteration construction is:

5 TIMES ADVCH LOOP.

This text would have the effect of advancing the compiler input character
pointer (See Section 10.5.8) 5 times.

The text for the two macros is as follows:

MACRO TIMES:” WHILE -1, DUP GE 0 START"’
MACRO LOOP ” REPEAT, LOSE,’
5.5.2 Abbreviated ENTRY and EXIT

Some people find it tiring to type ENTRY and EXIT when writing many
short procedures. For such people, the following two macros may be con-
venient:

MACRO { : ’ENTRY,’
MACRO } : "EXIT’

5.6 Problems

5.6.1 Problem 1

Compare the results of the use of normal source text, and the use of
MACRO’s.

6. Basic MINT Constructs

6.1 Introduction

This Chapter introduces the MINT constructs which reference VSTORE,
manipulate objects on the operand stack, and which provide control of
instruction execution.

6.2 VSTORE Referencing

There are five basic operators which reference VSTORE. Three of these
(GET, GETV, and VAL) obtain values from VSTORE. The -> (store) op-
erator stores a value at a specified VSTORE location. The operator ADV
increments by one the content of a VSTORE location. The external in-
terface operators (INCH and OPCH) and the string operators (GETCH,
PUTCH, MATCH, and DICMATCH) also reference VSTORE. These op-
erators are discussed in Chapter 10. All other operators operate only on
stack objects.

6.2.1 Obtaining Objects (GET, GETV)

The most common operation in program text is the obtaining of objects on
the operand stack. Therefore, the MINT compiler provides a uniform and
simple means of expressing this operation for various objects. Whenever
an identifier or a literal is recognized in the compiler input stream, object
text is generated which obtains the value of the referenced object. Thus,
the literal reference:

4926

will cause the compiler to generate text to obtain the integer value 4926.
Or, after introduction and setting by:

VAR abc:24

a reference to abc will generate text which obtains the value of the vari-
able abc, i.e. 24. The same rule applies to integer constants (introduced
by ICON). Similarly, a reference to a label (LAB) results in text to obtain

74 Machine-Independent Organic Software Tools

the address value of the label. The primitives which are generated for these
operations are GET, which obtains a constant value, and GETV, which
obtains the value of a variable. Since the occurrence of a literal or identifier
name causes the compiler to generate a GET or GETV using the required
address, it is never necessary to directly use these primitives. Since con-
stants cannot be modified they are generated as part of the instruction text.
The GET primitive obtains the constant value from the word immediately
following the GET instruction. GETV, on the other hand, uses the value
which follows the GETV as the address (generally the address of a variable
object) of the VSTORE location from which it obtains the value.

6.2.2 Indirect Addressing (VAL)
Indirect addressing is effected by means of the VAL operator. Its form is

VAL (address-obtaining-expression) .

This has the effect of obtaining the contents of the obtained address. Thus,
if table is a variable assigned to the start of a table, and xyz is a variable,
then

@table -> Qxyz,
VAL(xyz)
will obtain the contents of the first location of table, as xyz is an address
obtaining expression yielding the address of table. Similarly
VAL(3 FROM xyz)
obtains the contents of the fourth location of table. If ABC is a variable,
ABC
and VAL(QABC)
are equivalent.

Indirect addressing may be carried out to any level. Consider in the
above examples that table itself contains a list of addresses. Then the con-
struct

VAL(VAL(1 FROM xyz))

would obtain the contents of the location pointed to by the second location
of table. The sequence of operations is:

1 FROM xyz

Basic MINT Constructs 75

obtains the address of the second location of table. The inner VAL operator
obtains the contents of that location. The outer VAL operator treats the
obtained value as an address and obtains its contents.

6.2.3 The ADV Operator

Since incrementation by one is a very common operation, a primitive is
provided to make the writing of the operation more compact and to allow
faster execution by the Virtual Machine. This operator, ADV, expects as
its single argument the address of the object which is to be incremented by
one. Thus,

ADV(Qxyz)

yields exactly the same result as

xyz + 1 -> Qxyz .

6.2.4 The -> Operator

The -> (store) operator is used to store an object into a Virtual Storage
location. The store operator removes the top two objects from the stack. It
takes the top object as the Virtual Storage address, and stores the second
object at that address. The usual -> construction is:

-> address-obtaining-expression .

Therefore to store the value 3 into a variable xyz the construction

3 -> Qxyz
may be used, where @Qxyz is an address obtaining expression yielding the
address of the variable xyz. Of course,

3 Qxyz ->
is an equivalent expression. The destination for the store operation must
be, in effect, an address obtaining expression. If the construction

3 -> xyz

had been used the value of the variable xyz would be obtained instead of
the address. This value would be treated as an address. Such a construct is
quite valid where a variable is being used as an address pointer. Consider:

76 Machine-Independent Organic Software Tools

@table -> Qxyz .

This has the effect of storing the address of table in the variable xyz.
Subsequently

10 -> xyz

will result in 10 being stored in the first location of table, as the obtained
value of xyz is in fact the address of table. Note that

10 => 3 FROM xyz

would result in 10 being stored in the fourth location of table, 3 FROM
xyz being an address obtaining expression.

An attempt to store into an address outside the VM (M) Virtual Stor-
age limits results in a VM(M) Virtual Machine error.

6.3 Operand Stack Management

In many instances it is required to access the top item of the stack more
than once, and in some instances to remove it. It is also frequently required
to exchange the top two items on the stack. Three operators are provided
for more efficient object text production in these cases. The use of these
operators both reduces the number of generated instructions required for
a given result, and reduces the number of Virtual Storage references when
the object text is executed. The three operators are:

DUP - duplicate the top item on the stack,
LOSE - discard the top item on the stack,
<=> - exchange the top two items on the stack.

6.3.1 The DUP Operator

The DUP operator obtains on the stack a duplicate copy of the current top
item. It is a convenient way of referring to and at the same time retaining
the top item. For example if it is required to store the value zero into 3
variables p, q and r the construction:

0, . obtain zero
DUP -> @p,

DUP -> Qq,

-> @r,

Basic MINT Constructs 77
results in more efficient object text than writing:

0 -> @p,
0 -> Qq,
0->Qr.

As another example the absolute value of an integer object may be obtained
by:

DUP LT 0 THEN <NEG>

(The THEN construction should be self-explanatory in this context. It
is presented fully in Section 6.5.2.2.) In the example, the DUP operation
results in two copies of the integer object. The top copy is tested for negative
leaving the second copy to be negated or not depending on the result of
the test.

6.3.2 The LOSE Operator

The LOSE operator discards the top item on the stack. An example of the
use of LOSE is:

DUP GT MAX THEN <LOSE, MAX>

This sequence has the effect of testing if the top of stack value is greater
than MAX and if it is the value is replaced by MAX. A frequent application
of LOSE occurs in connection with the repeated DUP of an object which is
used within a loop (See Section 6.5). When the loop is complete the object
may be discarded by means of a LOSE.

6.3.3 The <=> Operator

The <=> operator exchanges the top two items on the operand stack. It is
logically equivalent to:

VAR savl:0
VAR sav2:0
->@savl
->@Q@sav2
savl

sav2 .

However, the <=> operation does not make any Virtual Storage references
for its operands.

78 Machine-Independent Organic Software Tools

As an example, consider a sequence which references a function which
returns two objects. It is then required to divide the second object by the
top object. If the function name is factors,

factors, <=>, /

will perform the intended operation.

6.4 Control Transfer

Three operations are available to alter the flow of control in a program. One
is an unconditional transfer, the other two are conditional. In well orga-
nized programs little need will be found for these control transfer operators.
Normal logical control is fully provided for by conditional expressions and
iteration (Section 6.5), and functions (Chapter 7). The control transfer
operators are provided as they form the basis for the higher level logical
control and iteration structures, and for special purposes such as initial
program start, or entry to a section of object text to be tested.

6.4.1 Unconditional Transfer (GO)

Unconditional transfer is effected by means of the GO operator whose form
is:

GO address-obtaining-expression .

The following are example uses of GO:

GO label
GO begin

where label and begin have been introduced as labels. A loop could be
written as

LAB xyz:
text
GO xyz .

The address obtaining expression may be as general as desired. For exam-
ple, consider:

GO VAL(x FROM @table) .

Basic MINT Constructs 79

In this example @table is assumed to be the address of the first of a list of
addresses. The value of x is used as a displacement from the start address
of table. The VAL operator then obtains the contents of the table entry x
entries from @table, which is treated as the address for the GO.

6.4.2 Conditional Transfer (YES/NO)

A simple form of conditional transfer is provided by the YES and NO
operators. These operators effectively apply the GO operator to an address-
obtaining expression depending on the value of a Boolean expression. The
form for the operators is:

Boolean-expression YES/NO address-expression .

The YES operator applies a GO to the value of the address-expression if
the Boolean-expression is true. Otherwise, the address-expression object is
discarded. The NO operator applies the GO if the Boolean-expression is
false. Otherwise, the address-expression object is discarded. For example
in:

p+1 GT q YES labl,

if p+1 GT q is true, the YES operator effects a jump to labl, otherwise
execution of the object program continues normally.

6.5 Conditional Selection and Iteration

MINT provides a range of conditional selection and iteration constructs. At
a low level simple object selection and conditional skips are provided, while
at a higher level general conditional selection and iteration are available.
The higher level constructs are implemented by means of macros which use
the low level facilities.

6.5.1 Object Selection

The CHOOSE operator is used to form object selection expressions. Its
form is:

Boolean-expression CHOOSE
(object-obtaining-expression, object-obtaining-expression)

The Boolean expression is evaluated and the resulting object is tested. If it
is true the object obtained by the first object-obtaining-expression is left on

80 Machine-Independent Organic Software Tools

the operand stack. If it is false the object obtained by the second expression
is left on the stack. For example, the larger of two integer numbers may be
obtained by:

a GT b CHOOSE (a, b) .

The expression a GT b obtains a Boolean object. If the object value is
true then a is left on the stack. If the value is false then b is left on the
stack. The implementation of the CHOOSE operator is such that all three
of the parameters are obtained, then the selection is made. Thus, if any
parameter is an expression the expression is always evaluated even if the
parameter is not selected.

The CHOOSE operator may be combined with the GO operator to
produce conditional transfers as, for example:

GO p EQ q CHOOSE(labl, lab2) .

If p EQ q is true the GO will be applied to labl. Otherwise, the GO is
applied to lab2.

6.5.2 Conditional Execution

There are two forms for conditional execution. One form conditionally skips
the next VM(M) instruction. The second form conditionally selects text
sequences of any length. The first form is primarily intended for use where
highly efficient simple branches are required. The second form is logically
more general than the first.

6.5.2.1 The Skip Operators (TRUE/FALSE)

The skip operators are used to conditionally skip the VM(M) instruction
which immediately follows the operator. The operator determines whether
to skip by testing the top item on the operand stack. Thus, the operators
take the form:

Boolean-expression TRUE

or
Boolean-expression FALSE .

The operator TRUE skips the next VM(M) instruction if the Boolean-
expression obtains a false value. The operator FALSE skips if the Boolean-
expression obtains a true value. If the operator does not skip, normal exe-
cution continues with the instruction following the operator. The Boolean-

Basic MINT Constructs 81

expression is always evaluated, and the result is removed from the stack by
the operator. For example:

n GT 4 TRUE EXIT

would have the effect that if n is greater than 4 the EXIT instruction is
executed. Otherwise, the EXIT is skipped.

These operators should only be used for object text optimization where
very highly efficient selection is demanded. The next Section describes
the THEN construction, which is a more general-purpose substitute for
TRUE/FALSE.

6.5.2.2 Conditional Expressions (THEN ... ELSE ...)

Conditional expressions allow the selection of alternate object text se-
quences depending on the value of a Boolean expression. The conditional
expressions allow an optional ELSE clause. Thus, the two possible forms
are:

Boolean-expression THEN <text>

or
Boolean-expression THEN <text ELSE text>

In the first form the text between the angle brackets is executed if the
Boolean expression obtains a true value, otherwise it is skipped. In the sec-
ond form the text following and preceding ELSE is executed if the Boolean
expression obtains a true value. If the Boolean expression obtains a false
value the text following the ELSE and preceding the is executed. Con-
ditional expressions may be nested to any level. An example conditional
expression is:

x GT 100 THEN <100 —>@x>
the value of x set to 100 if its value was greater than 100. To repeat the
example in Section 6.3.1, the expression

DUP LT 0 THEN <NEG>

has the effect that if the duplicated item on the stack is negative it is
negated, otherwise it is left as it is. As an example of the second form
consider two variables a and b such that the lesser is required to be set
equal to the greater of the two. The expression

a GT b THEN <a ->@b ELSE b ->@a>

82 Machine-Independent Organic Software Tools

will effect this because if a is greater than b it is stored into b, and if not
then b is stored into a. As a further example, consider:

DUP GT max THEN <->@max ELSE LOSE> .

In this example the top item on the stack is duplicated and compared with
the variable max. If it is greater the second copy is stored into max. If it is
not then the second copy is discarded by means of the LOSE operator.

The conditional expressions are implemented by means of standard
macros. These macros are:

MACRO <: 'LAB OUT$ OUTS,’

MACRO >: ’, OUT$:FORGET OUT$ ’

MACRO THEN: ’, NO’

MACRO ELSE: ’LAB Z ,GO Z,>RENAME Z OUT$’

Substitution of the above macro text into the example conditional expres-
sions will yield the intended flow of control in terms of basic operators.
Carrying out this substitution in a few sample cases will help to clarify the
control structure, and helps to relate source text to object text.

6.5.3 Execution Iteration (WHILE ... REPEAT)
The general form of an iteration expression is:

WHILE Boolean-expression
START

text
REPEAT

The iteration starts at the WHILE and the Boolean expression is evaluated.
If the condition is true the section of text is executed and the repeat effects
a jump back to the WHILE where the Boolean expression is evaluated
once again. This process continues until the Boolean expression yields a
false result. When this occurs the START effects a jump to the location
just after the REPEAT.

Consider the following example to zero an array of 100 storage units:
0, . line 1

WHILE DUP LT 100 . line 2
START . line 3

Basic MINT Constructs 83

DUP FROM Qarray, . line 4
0, <=>, ->, . line 5
+1 . line 6
REPEAT . line 7
LOSE . line 8

In line 1 the value zero is obtained on the stack. In line 2 the iteration begins
with the Boolean expression which obtains another copy of the current top
of stack value and compares it with the value 100. If the current value is
less than 100, the iteration is executed. Line 3 indicates the start of the
section of iterated text. In line 4 the current offset from the start of the
array is computed. A copy of the offset is left on the stack. Line 5 obtains
a 0 on the stack, exchanges the 0 and the current address in the array,
and then stores the 0 at the current address. In line 6 the current offset is
incremented by 1. Line 7 is the end of the iteration. From this point control
returns to the WHILE in line 2. When the iteration is completed due to
a Boolean false in the WHILE expression control passes to the expression
after REPEAT, which is line 8. This line removes the offset value which
was left on the stack.

Iterations may be written using only the conditional expressions, as
for example:

LAB out
LAB loop:

text

exit-condition THEN <GO out<
GO loop,
out:

Alternatively, components of the general iteration expression may be used,
as in:

WHILE
text

exit-condition NO BACK
continuation after loop.

The iteration expressions are implemented by use of standard macros.
These are:

84 Machine-Independent Organic Software Tools

MACRO WHILE: >, LAB LOOPS:’

MACRO START: 'THEN<’

MACRO REPEAT: GO BACK>’

MACRO BACK: 'LOOPS$, FORGET LOOPY’

6.6 Miscellaneous Constructs

There are several operators which provide useful service functions. The
most important are the instruction intercept operator and the instruction
emulation operator. Others include normal and error Virtual Machine stop
operators, a host environment interface operator, an operator to save the
current VSTORE, and a means of obtaining the current time value from
the Virtual Machine. These operators are described below.

6.6.1 Virtual-Machine Instruction Intercept (TRAP)

The instruction intercept, or trap, operator is a key component of MINT
analysis and diagnostic capabilities. The TRAP operator allows any pro-
gram to gain control, as if by a procedure reference, just prior to each
instruction execution. This allows information to be displayed, as in the
T$ trace routine (See Section 8.6.2), operation usage data to be computed
as in the instruction mix routines described in Section 12.7, or special con-
ditions to be tested for as a part of diagnostic analysis.

The form of the TRAP operator is:

TRAP (address-parameter) .
The TRAP operator is used in two distinct instances:
1. to enable or disable instruction trapping, and

2. to return control to the main instruction path when the trap procedure
has completed processing.

These two cases are distinguished by the location of the TRAP operator. If
the TRAP operator is executed in normal text it is treated as an instance
of the first case. If the operator is executed within the trap procedure then
it is treated as the second case. Instruction trapping is enabled by the
sequence

TRAP (address-parameter) .

When trapping is enabled the Virtual Machine will transfer control to the
address given as the argument prior to execution of the next (normal) in-

Basic MINT Constructs 85

struction. When control is transferred in this manner, the address of the
next instruction is obtained on the operand stack, and further trapping
action is suspended. The trap processing procedure may carry out any pro-
cessing since it is a normal MINT procedure. When processing is complete,
this procedure must return control by a reference to the TRAP operator
of the form:

TRAP (address-parameter) .

The address-parameter must be the instruction address which was passed
on the stack when the procedure was entered. When this trap instruction is
executed the address-parameter is used to reset the next instruction address
in the Virtual Machine, the next instruction is executed, and then trapping
is re-enabled. When the sequence

TRAP(0)
is executed, instruction trapping is disabled.

The following example shows all of the steps which are involved in the
use of trapping. If ST-TRAP is referenced, the text below will display the
address of each subsequently executed instruction.

LAB TRFCN: . line 1
OPINT(DUP), OPNL, . line 2
TRAP() . line 3

DIR ST-TRAP: ENTRY, . line 4
TRAP(QTRFCN) . line 5
EXIT . line 6

DIR END-TRAP: ENTRY, . line 7
TRAP(0), . line 8
EXIT . line 9

Lines 1 through 3 define the intercept procedure. Line 2 displays the ad-
dress of the next instruction to be executed and line 3 terminates the trap
procedure. Lines 4 through 7 define the directive ST-TRAP which initial-
izes and enables trapping. Line 5 enables trapping and provides the address
of the trap procedure. Lines 7 through 9 define the directive END-TRAP
which turns off further trapping. Line 8 disables trap mode.

6.6.2 Virtual-Machine Instruction Emulation
The EMULATE operator provides a means of replacing the operation of

any operation code by a standard MINT procedure. This permits selective
analysis of the operation of individual primitives, the testing of possible new

86 Machine-Independent Organic Software Tools

primitives, or the investigation of specific effects based on the execution of
a primitive. Emulation may be requested for any operation code (except
80 which is the operation code for EMULATE) including the currently
undefined operation codes. The emulate operator requires two arguments;
the operation code to be emulated and the address of the procedure which
will be executed in place of the primitive. If the procedure address is zero
emulation for the given operation code is discontinued and normal VM
execution is resumed. The procedure which carries out the emulation must
be written according to the following rules:

1. On entry to the procedure the operand stack contains the address of
the instruction which is being emulated. The link stack has not been
modified and therefore it may not be used for return of control. The
correct return is to increment the address on the operand stack by
one (1 FROM) and reference EMULATE with the currently emulated
operation code and this address as operands.

2. On entry to the procedure, further emulation of the operation code
is disabled so that the operation code may be used within the pro-
cedure without causing emulation. Emulation of an operation code is
re-enabled by the reference to EMULATE which returns control from
the emulation procedure.

3. Note that care must be taken within the emulation text from the
standpoint of reuse of local variables in procedures which contain the
operation code being emulated and which are referenced in the emu-
lation code. For example, / is used in the OPINTD procedure. If / is
being emulated and the emulation procedure uses OPINTD then such
use will overwrite current values of local variables in OPINTD so that
OPINTD will not continue normally after the emulated /. If emulation
is being done using a previously undefined operation code problems of
this kind will not arise.

A sequence for emulation of the ENTRY primitive is:

FN EFT: ENTRY, OUTST(ENTRY executed at: ’),
OPINTD(DUP), OPNL, +1, EMULATE(34, <=>),
NOW EMULATE(34, QEFT) ! .

After the EMULATE operator has been executed, any execution of the
ENTRY operator will cause the function EFT to be obeyed instead. Thus,
the top item on the operand stack will be printed each time an ENTRY is
executed, except that any ENTRY which is executed after entry into EFT
and before the EMULATE instruction which causes return from EFT will
be executed normally.

A more informative version of the above function would be:

Basic MINT Constructs 87

FN EFT: ENTRY, OUTST(ENTRY into: ’),
LOOKD(DUP), OPNL, +1, EMULATE(34, <=>),
NOW EMULATE(34, QEFT) ! .

This sequence would display the name (if any) of the procedure being
entered at each occurrence of an ENTRY primitive.

6.6.3 Virtual Machine Stops (STOP, ESTOP)

There are two operators which cause the Virtual Machine to stop instruc-
tion execution, one for normal stops (STOP) and one for abnormal or error
stops (ESTOP). If MINT is implemented directly on a hardware system,
STOP should terminate in such a way that a new MINT program may
conveniently be loaded and run. ESTOP should terminate in a manner
such that error data, such as the stack contents, may be displayed. Under
a MINT implementation on an operating system, STOP should cause a
normal return to the operating system. ESTOP should provide diagnostic
information before taking an abnormal return to the system.

6.6.4 Host Environment Interface (EXR)

This operator, EXR, provides the means of communicating character string
data to the host operating environment. The operator is necessarily host
system dependent. The content and number of parameters depend on host
system requirements.

6.6.5 Saving VSTORE (CDUMP)

The CDUMP directive is intended to provide a convenient means of saving
the current contents of VSTORE so that computation may be continued at
a later time. The restore of the saved VSTORE may be requested as a part
of loading and initializing the MINT Virtual Machine. This operator may
be implemented as an alternative to writing VSTORE in portable format,
and then restoring it. In many implementations a direct save of VSTORE
will be more efficient than using portable format. However, the direct save
is not portable. The CDUMP operator references the PDUMP function to
perform the writing of VSTORE in PDUMP format. CDUMP expects two

arguments:

CDUMP ’filename’ address
The filename is the name of the file in which to save VSTORE and address

88 Machine-Independent Organic Software Tools

is the address to set as the start address when the PDUMP is reloaded.
Thus:
CDUMP 'MCOMP.PDM’ 32768

will write out the system so that the compiler is initialized when the
PDUMP is reloaded. This is the directive used to create the PDUMP form
of the compiler.

The CDUMP operator may also be implemented to save the cur-
rent VSTORE contents in portable format. In this case only a single VS-
TORE load mechanism is required. The choice of implementation tech-
niques should be determined for each implementation depending on host-
system characteristics.

6.6.6 Obtaining the Current Time (TIME)

The TIME operator obtains on the stack the current time in seconds. The
exact form of the result of this operator may be implementation dependent.

6.7 Problems

6.7.1 Problem 1

Write text which will store the number 1 in the first location of an array, 2
in the second, etc., until values have been stored in the first 100 locations.

6.7.2 Problem 2

Write text to store the address of each element of an array into that element
for an array of length 20.

6.7.3 Problem 3

Write text which determines how many of the elements of an array (of
length 40) have a value which is greater than 10 and less than or equal to
45.

Basic MINT Constructs 89

6.7.4 Problem 4

Write text which locates the first element in an array (of length 50) which
has a value greater than 40.

6.7.5 Problem 5

Write text to sort the elements of an array of length 50.

6.7.6 Problem 6

Apply LIST LOCS LCODE to some of the previous problems to determine
the apparent correctness and efficiency of the generated object text.
6.7.7 Problem 7

Write a procedure which moves the contents of table a to table b. The
procedure is referenced as:

MOVE(length, address-of-table-a, address-of-table-b) .

6.7.8 Problem 8

Write a procedure which links a buffer into a chain of buffers. The procedure
is to be referenced as:

LINK (address-of-control-block, address-of-buffer) .

The control block consists of two words. The first word points to the first
linked buffer, or is zero if no buffers are linked. The second word points
to the last linked buffer, or is zero. The new buffer is to be linked to the
end of the chain. The first word of each buffer is to be used for linking the
buffers.

6.7.9 Problem 9

Write a procedure which unlinks and returns the address of the first buffer
in the buffer chain used in Problem 8. A value of zero is to be returned if
no buffers are linked. The procedure is to be referenced by:

DELINK (address-of-chain-control-block) .

920 Machine-Independent Organic Software Tools

6.7.10 Problem 10

Write suitable procedures to trap instructions and display the address of
each instruction, the instruction contents, and the current top-of-stack
value of the operand stack.

7. Functions

7.1 Introduction

A function is a procedure which may be executed from anywhere within
other text and which normally returns control to the point of reference
when it is completed. In MINT there are two types of functions:

e Identified functions

e Anonymous functions.

7.2 Identified Functions

An identified function is a function which may be referenced by an iden-
tifier which has been introduced as class function (FN). Example function
introductions are:

FN function
FN testit.

Within a procedure body the first operation must always be an ENTRY
operation, i.e.

FN x: ENTRY .

Use of the EXIT operator at any point in the function returns control to
the point following the function reference. A simple function would thus
take the form:

FN xxx: ENTRY,
text, ...,
EXIT .

7.2.1 Passing Parameters to Functions

Functions, since they are sequences of text which may be referenced from
many places, are most useful when parameters can be passed to them and

92 Machine-Independent Organic Software Tools

they in turn can return results to the referencing text. Parameters are
passed to functions by obtaining them on the stack and results are returned
by leaving them on the stack before performing an EXIT. By the nature
of the Virtual Machine any kind or combination of kinds of objects may
be passed as parameters including the addresses of other functions. It is
thus possible to implement such things as logical functions which return a
Boolean result, or function obtaining functions which return as a result the
address of some other function to be obeyed.

7.2.2 Referencing a Function

A reference to a function is generated simply by the occurrence of the name
of an identifier which has been introduced as a function. Thus,

func

would compile the appropriate object text to reference the function func.
Any parameters to be passed must have been obtained on the stack. For
example,

a b 3 func

would obtain the values of a and b and the constant 3 on the stack (in that
order) and then reference the function func. It is usual to express this more
clearly by writing

func (a, b, 3)

with the parameters enclosed in parentheses following the function refer-
ence. The operation of this construction was explained in detail in the
Section on the use of comma and parentheses (Section 4.9).

An example of a function to sum two numbers is as follows:

FN sum:ENTRY, . line 1
+ . line 2
EXIT . line 3

An example of a reference to this function is

sum (a, b) => Qc . line 4

Considering line 4 first, the function sum is referenced with two parameters
which are the values of the variables a and b. The function sum is expected
to obtain a single result which is stored into the variable ¢ on return from
the function. In line 1 the identifier sum is introduced as a function and set

Functions 93

(See Section 2.3.4). The first operation performed is the ENTRY operation.
In line 2 the plus (+) operation is performed which sums the top two items
on the stack and leaves the result as the top item. In line 3 the EXIT
operation returns to the point where the function was referenced with the
single result on the stack.

It is very important to remember that objects are popped from the
stack in the reverse order from which they were pushed on. Consider a
function max which obtains on the stack the greater of two values passed
to it as parameters:

VAR argl:0 . line 1
VAR arg2:0 . line 2
FN max:ENTRY, . line 3
-> @arg2, . line 4
-> @argl, . line 5
argl GT arg2 CHOOSE (argl, arg2) . line 6
EXIT . line 7

This function might be referenced thus:

max (vall, val2) -> @biggest

In lines 1 and 2 two variables are introduced as temporary storage for the
passed parameters. Line 3 is the function entry point. In line 4 the second
parameter (val2, for the reference above) is taken from the stack. This is
because val2 is the last parameter obtained and is therefore the top item
on the stack.

7.2.3 Passing Parameters

Passing of parameters from a referenced function to another function is
easily achieved by simply leaving the parameters on the stack, as in:

funcl (a, b) . line 1
funcl:ENTRY . line 2
func2 (c) . line 3
EXIT . line 4

In line 1 funcl is referenced with parameters a and b. In line 3 a second
function is referenced with a single parameter c. Note that at this time
there are three parameters on the stack, namely a, b and c. Thus, the two
parameters a and b have been transparently passed from funcl to func2.
For purposes of readability it is customary to write line 3 as

94 Machine-Independent Organic Software Tools

func2 (,, ¢)

the two commas being present simply to show that two parameters which
were already on the stack are being passed to func2, in addition to the
parameter c.

7.2.4 Complex Parameters

Parameters may be any form of object-obtaining expression. Consider a
function called fill which presets table entries and is referenced with three
parameters:

e The length of the table,
e The address of the table,
e The value to be set in each entry.

A reference to this function might be written as

fill (&(@tabend ADIFF @table), @table, 2xmax(a, b))

where the first parameter is the evaluated constant &(Q@Qtabend ADIFF
@table) (See Section 2.5.4.), the second parameter is a simple address con-
stant, and the third parameter is an arithmetic expression which itself in-
cludes a reference to the function max with parameters a and b. All three
parameters are fully evaluated before the function fill is referenced.

7.2.5 Functions Used to Define Record Structures

A record is a series of related data items, any one of which may be manip-
ulated given the structure of the record and given the current address of
the start of the record. Frequently, record structures involve pointers which
allow substructures. The use of functions is a particularly effective means
of expressing the accessing for such structures. For example, consider the
record structure given in Figure 7-1. Assuming that the variable rpoint
contains an address pointer to the start of the record, then the items could
be referenced as:

VAL(rpoint),

VAL(2 FROM rpoint),

VAL(VAL(1 FROM rpoint),

VAL(1 FROM VAL(1 FROM rpoint)) .

Functions 95

item 1

address .
pointer item 3
item 2 item 4

Figure 7-1. Record Structure

Such referencing is awkward and prone to errors which may not become
immediately evident. Functions may be used to define such referencing
structures in such a way that, within the referencing program, the references
to each data item appear as normal variable references. For the above
example, this is done as follows:

FN @item1: ENTRY rpoint EXIT

FN @item2: ENTRY 2 FROM rpoint EXIT
FN @srec: ENTRY 1 FROM rpoint EXIT
FN @item3: ENTRY VAL(@srec) EXIT

FN @item4: ENTRY 1 FROM Qitem3 EXIT
FN iteml: ENTRY VAL(Qitem1) EXIT

FN item2: ENTRY VAL(@item2) EXIT

FN item3: ENTRY VAL(@item3) EXIT

FN item4: ENTRY VAL(Qitem4) EXIT .

Using the above functions, data items may be referenced or stored into as
though the items were simple variables, as:

123 -> @Qitem3,
item2 —> Qitem4 .

This technique has the additional advantage of providing program inde-
pendence of the structure of the record. If a change is made to the record
structure only the function definitions need to be changed.

7.2.6 Recursion

All MINT procedures can be used recursively since all return addresses
are pushed onto the procedure linkage (link) stack. Recursion can be sup-

96 Machine-Independent Organic Software Tools

ported to any level. Note however that recursive use of variables is not au-
tomatically provided, and must be implemented by the programmer when
required. MINT facilities for software controlled lists, and free-space man-
agement (See Chapter 9) make this a simple task.

7.3 Anonymous Functions

In cases in which a function is being passed as a parameter or otherwise
used indirectly, it is not necessary to introduce a function identifier and
write the function separately. Instead, the function may be written in-line
and be unidentified. This facility is provided by square brackets, [and].
For example,

[0 ->@a, 0 ->@b)]

is an anonymous function. When the compiler encounters such an anony-
mous function it generates the object text along with ENTRY and EXIT
operations and sets up object text to obtain the address of the anonymous
function on the stack. As an example of the use of an anonymous function,
consider a function called calc which requires as parameters two values,
and the address of a function which is to be referenced during execution of
the calc sequence. The calc function might be referenced thus:

calc (a+Db, 100, [0 ->@pqr, max(a, b)]) .

The third parameter is the address of the anonymous function which sets
par to zero and obtains the result of max(a, b). Another example is the
compiler’s string input function INSTRING, which is passed the address
of a pointer, and the address of a function which determines the end of the
string. INSTRING may be referenced as:

INSTRING(@pointer, [NOCHS LT 20]) .

The anonymous function tests a compiler variable (NOCHS - the number of
characters copied) and causes the INSTRING function to continue building
the string while the number of characters is less than 20. The INSTRING
function is described in Section 10.5.4.

7.3.1 The DO Operator

The DO operator is used to reference a procedure whose address has been
obtained on the stack, or to reference a primitive whose operation code
value has been obtained on the stack. The DO operator is useful, for in-

Functions 97

stance, if a variable is used to contain the address of a procedure or if a
procedure address is passed as a parameter. This makes it convenient to
write text which will execute different procedures, or primitives, depending
on the current values of variables or passed parameters. The DO operator
uses the value of the object on the stack to distinguish between its use
for procedures and primitives. If the value is equal to or less than 80, DO
executes the primitive. If the value is greater than 80 it makes a procedure
reference. No check is made to ensure that the value is a valid operation
code or that a valid procedure starts at the given address. The DO operator
is the construct which is used to reference anonymous functions. Its form
is:

DO address-obtaining-expression,
or numeric code of primitive,

where the address obtained is that of a function or directive. The DO
operator can also be used to reference an identified function although the
sequence is less efficient than direct reference. Thus,

DO @func

is directly equivalent to

func

since in the first case the address of the function func is obtained and the
function referenced by means of the DO, and in the second case the function
reference is generated due to the occurrence of the function identifier.

The use of the DO operator may be illustrated by reference to the
calc example in the previous Section. The manner in which the described
presetting facility is effected is as follows:

VAR presets:0
VAR argl:0
VAR arg2:0
calc:ENTRY
-> @presets,
-> @arg2,
-> Q@argl,
DO presets,

etc.

In this example the three parameters are stored on entry to the function.
To reference the passed function the DO operator is applied to the value

98 Machine-Independent Organic Software Tools

of the variable presets, this value being the address of the passed function.
Note that it is not strictly necessary to store the passed parameters. A
similar function could have been written as

calc:ENTRY
DO,

etc.
since the DO is applied to the top object (last parameter) on the stack.

It is not necessary that the address of a passed function be that of an
anonymous one, any function address will do. Thus,

cale (10, 20, @max)

would apply the max function discussed in previous examples to the first
two parameters. Note that if max had been written without the at-sign
(@) then instead of the address of max being passed, the function would
actually have been referenced prior to referencing calc. This would have
produced unintended results.

7.3.2 Link Stack Manipulation

Two operators are available to allow direct operation on the link stack
pointer. These operators allow control over the effective return level from
a procedure.

7.3.2.1 Obtaining the Link Stack Pointer Value (GLKP)

The GLKP operator obtains the current value of the link stack pointer
(LP). Note that this is the pointer (LP) value, not the contents of the top
of the link stack. This pointer value is not logically an address in VSTORE.
The only valid use of the pointer value is to restore it to the link stack
pointer by means of the SLKP operator. GLKP requires no arguments.

7.3.2.2 Setting the Link Stack Pointer Value (SLKP)

The SLKP operator resets the link stack pointer (LP). SLKP requires one
argument which is a value which was previously obtained by means of
GLKP. The effect of the SLKP operator is to adjust the link stack pointer so
that the next reference to EXIT will return control to the procedure which
referenced the procedure within which the pointer value was obtained by
a GLKP. This provides a means of making direct returns to higher levels

Functions 99

without execution of a sequence of EXIT’s. It may also be used to force a
return which bypasses some text which would otherwise be executed. Since
SLKP, in effect, causes abnormal flow of logical control, it should be used
only when absolutely required and then with considerable care.

An example use of GLKP and SLKP is the following;:

VAR linksave:0
FN SUB1: ENTRY
SLKP(linksave)

other text

EXIT

FN MAIN: ENTRY
GLKP->Qlinksave,
SUB1

OUTST("Return from SUB1.”), OPNL,
EXIT .

In this example, if MAIN is referenced, the EXIT in SUB1 will cause a
return to the point at which MAIN was referenced. The text following the
reference to SUB1 in MAIN will not be executed.

7.4 Miscellaneous Compiler Functions

7.4.1 The MOVE Function

The MOVE function physically copies data from one area of storage to
another. It is referenced as follows:
MOVE (item-count,@source,@destination)

where the first parameter is the number of storage units to be moved,
and the second and third parameters are the addresses of the source and
destination areas respectively.

7.4.2 The DECMP Function

This function provides a means of displaying the contents of VSTORE in
VM(M) instruction format. The D$ directive references DECMP to display

100 Machine-Independent Organic Software Tools
storage. The form of a DECMP reference is:

DECMP (start-addr, end-addr)

where start-addr is the start address and end-addr is the end address for
the display. The display format is:

nnnnn label kkkkk oper, iden,

where:
nnnnn - VSTORE address,
label - identifier whose value is nnnnn, if any,
kkkkk - contents of VSTORE in decimal,
oper - operator whose value is kkkkk,
iden - identifiers whose values are kkkkk, if any.

7.4.3 The DUMP Function

The DUMP function simply stores the top item on the stack into a vari-
able called TEMP. Since many procedures use DUMP and TEMP, the
value saved in TEMP must not be considered to be preserved across com-
piler procedure references. TEMP is for temporary storage of intermediate
results.

7.4.4 The NULL Function

The NULL function is a function which does nothing. It is provided for
use in various situations where a function reference is required or desirable,
but no action is required. For instance, the NULL function may be set in
a table of function addresses in order to reserve a position in the table.
Subsequently, that position may have another function address set into it.

7.5 Summary of Compiler Functions

The following Table gives the names of all normally available compiler func-
tions. A brief description of the function is given. Some of these functions
will not be fully described until subsequent Chapters. Refer to the Index
for the location of the complete description.

Functions 101

Table 7-1 Compiler Functions

Function Description

ADVCH advance the input pointer by one character
BINLOC binary search routine

BLANKS set input pointer to next non-blank character
BTINIT initialize B-Tree

BTDEL delete entire tree

BTINSRT insert data item in tree

BTREM remove data (all items for given key)
CHAR obtain current input character
COMPILE compile a string

DECMP display VSTORE in VM (M) format
DETACHED pop item from item list

DIGIT test if current character on input is digit
DUMP save top of stack

FNAME create string from input

FORBTVAL apply a function to each data item for a given key
FOREACH apply function to each item in list
GETSTR read a string from an external segment
ININT convert current input to integer
INSTRING build input string

IPAR evaluate current input expression

JOIN join item to list

LETTER test if current input is a letter

MOVE copy data in VSTORE

NEXTCH obtain next input character

NEXTFREE acquire free-space block

NULL null function

OPFF output form-feed character

OPINT display integer

OPINTD display magnitude of number

OPNL output carriage-return character

OouTsT display string

POPPEDUP obtain item from item list

POPUP pop item from list

POPUPREC restore a record from a list

PUSHD push item into list

PUSHDREC save a record in a list

READ read line into compiler input buffer
READINP reference READ and do listing action
SAVBLOCK decrement BLOCK level and save identifiers
SETBLOCK increment level and reintroduce identifiers
SETBSE set output conversion base

SETOPP set output format

102 Machine-Independent Organic Software Tools

7.6 Problems

7.6.1 Problem 1

Convert the text for problems 1 through 5 of Chapter 6 to function form
with appropriate arguments so that the functions may be applied to arrays
of arbitrary length.

7.6.2 Problem 2

Modify the sort function so that the function which determines the order
of two elements is passed as a parameter. Write a function for use with
the sort function which will sort an array into odd values first, then even
values.

7.6.3 Problem 3

Define a record structure suitable for telephone book entries, and write
appropriate accessing functions.

7.6.4 Problem 4

Write a function to return on the stack the result of dividing two supplied
parameters. The function is to be referenced as DIV(a,b) and is to return
the result of a/b.

8. Directives and Immediate Execution

8.1 Introduction

A directive is a function which is obeyed when the compiler encounters a
reference to its identifier. Much of the compiler itself consists of directives
such as : (colon), @ (at-sign), PAGE, RENAME, etc. A directive is written
exactly as a function with ENTRY and EXIT operations, the latter return-
ing control to the compiler when the directive is completed. The directive’s
identifier is introduced into class DIR. Thus,

DIR abc

introduces the identifier abc as a directive. A directive cannot be obeyed
until the identifier is set. Any reference to an unset directive identifier will
produce incorrect results.

8.2 Input Parameters for Directives (IPAR)

Since directives are obeyed immediately, it is usual that any parameters
which may be needed will follow as part of the input stream. Such parame-
ters can be retrieved from the input image, evaluated, and obtained on the
stack by means of a reference to the compiler function, IPAR. To illustrate
this the compiler directive RESERVE will be discussed. This directive is
written in the compiler as:

DIR RESERVE:ENTRY
IPAR FROM DLOC -> @DLOC
EXIT .

An example reference to the directive is:

RESERVE 500 .

When the compiler encounters the identifier RESERVE and determines
that it is a directive it immediately executes the procedure. The first oper-
ation in the RESERVE procedure is a reference to the IPAR function which

104 Machine-Independent Organic Software Tools

then references the compiler to compile and evaluate the next element in
the input stream, in this case the constant 500. The result of this evalu-
ation is left on the stack. The IPAR function then returns control to the
RESERVE directive where the parameter is used to increment the variable
DLOC. (DLOC is the compiler’s data location counter.)

8.2.1 TPAR-expressions

Because of the way the IPAR mechanism operates, only one MINT ele-
ment is compiled as an IPAR parameter unless the first element is an open
parenthesis. Thus,

RESERVE 2xa+b

would result in an IPAR value of 2, as the first element is not an open
parenthesis. If an open parenthesis is the first element the IPAR function
drives the compiler until a matching closing parenthesis is encountered. For
this reason IPAR parameters consisting of more than one element must be
enclosed in parentheses. Thus, correct forms are:

RESERVE (2+a-+b)

or
RESERVE (2«(a+b)) .

Note in the second example that IPAR driven compilation terminates at
the second closing parenthesis, i.e. the one which matches with the first
open parenthesis.

IPAR-expressions are not constrained to obtaining a single object on
the stack. For example, the compiler directive D$, which references IPAR,
requires both a start and end address for its operation, i.e.

D$ (@Qfunc, 25 FROM @func) .

In this case two objects are obtained as the result of execution of the IPAR-
expression.

8.3 Referencing Directives as Functions

As described previously, a reference to an identifier which is a directive
causes the directive to be obeyed immediately. There are occasions when
it is required to compile a reference to a directive, i.e. to treat a directive
exactly as a function. This may be achieved by preceding the directive

Directives and Immediate Execution 105
name with the directive REF (See Section 2.3.3.4). Thus,

REF RESERVE

has the effect of compiling a function reference to the directive RESERVE.
The compiler frequently makes use of this facility when it wishes to apply
the action of the comma, i.e.

REF , .

A directive which uses the IPAR mechanism should not be referenced
as a function unless it is really intended to cause the compiler to compile
and execute the next input expression.

8.4 Immediate Execution

Directives provide a means by which text may be executed at compile
time. However, the directives concerned occupy storage area and dictio-
nary space. A facility exists in MINT to compile and execute text, and
subsequently discard it and any identifiers associated with it. This is ef-
fected by means of the NOW and ! (exclamation mark) directives using the
form:

NOW source text ! .

When this facility is used all the MINT source text between the NOW and
!'is compiled and then executed. The space used for the compilation of this
text is then released. This construction may be used to initiate a MINT
program, for example:

LAB begin:
MINT program

NOW G(j begin !

As another example, if the reserve directive had not been implemented, its
effect could be achieved by, for example:

NOW 100 FROM DLOC -> @DLOC !
instead of RESERVE 100.

The NOW directive is very useful for analysis and setup purposes,
enabling functions in a program to be unit tested very conveniently without
using up program space. For example, to trace a function execution the

106 Machine-Independent Organic Software Tools

following could be used:

T$(@NEWFN, @FNEND, 0), line 1
NOW NEWFN(10, 20) ! . line 2
NOW NEWFN(MINUS 4, 0) ! . line 3
T$(0, 0, 0) . line 4

Line 1 initiates trace mode between the limits QNEWFN and QFNEND
(assume FNEND is a label in NEWFN) for all instructions. Line 2 contains
a reference to NEWFN which is compiled and executed due to the NOW. . .!
sequence. Trace information will be printed, along with any output from

NEWEN. Line 3 causes the compilation and execution of another test of
NEWFN. Finally, line 4 turns trace mode off.

8.5 The Class Directive

The CLASS directive introduces new identifier classes. When the new iden-
tifier is set a three entry table should be constructed as follows:

CLASS newcl: syntax, gen, assign
where newcl is the new class name, syntax is a function to be obeyed when
an identifier in this class is recognized, gen is a function to be obeyed when

object text is to be generated, and assign is a function to be obeyed when
assignment action is required.

8.6 Miscellaneous Directives

The following directives provide diagnostic and program analysis tools.

8.6.1 The Decompile Directive (D$)

Areas of storage may be decompiled, i.e. their contents printed in Virtual
Machine language (VM(M)) format. The decompile directive is invoked by

D$ (start-addr, end-addr)

where the two parameters are the starting and ending addresses of the area
to be decompiled.

Directives and Immediate Execution 107
8.6.2 The Instruction Trace Directive (T$)

Execution of VM(M) Virtual Machine instructions may be traced. If an
instruction is being traced its address, instruction text, and the current
operand stack values are printed when the instruction is executed. Printing
may be requested for a specified range of instruction addresses. In addition,
the tracing of only a specific instruction code may be requested. The T$
directive is used as follows:

T$(start-addr, end-addr, op-code) .

The three parameters are defined as follows: If start-addr and end-addr
are zero, tracing is disabled, otherwise tracing is enabled for the range of
instruction addresses provided by start-addr and end-addr. When the op-
code value is zero all instructions are traced and displayed, otherwise only
the instruction whose value is given by op-code is traced and displayed. The
T$ directive uses the Virtual-Machine instruction trap operator, TRAP, as
discussed in Section 6.6.1. When T$ is referenced it displays a heading of
the following form:

Trace mode active
LVL LABEL VA VAL OP.CODE STACK:0 :1
where:

LVL is the current relative level of procedure call, i.e. the relative
value of the link stack pointer,

LABEL is the name of any label which is set to this address,
VA is the current VSTORE address,
VAL is the instruction operation code value,
OP.CODE is the name of the primitive, and
STACK gives the top (0) and next (1) items on the operand stack.
Following this header, a line is displayed for each traced instruction, giving

the information described above. If the traced text displays any output this
output will be intermixed with the trace output.

In the current system the T$ directive is maintained in an optional
file. It may be excluded from a copy of the compiler in order to minimize
space requirements.

108 Machine-Independent Organic Software Tools
8.6.3 Dictionary and Dictionary Item Information

MINT dictionaries determine the behavior of MINT programs. Therefore,
it is often useful to know the currently defined names in the active dictio-
naries, along with information about the names which is contained in the
dictionary records. The directives ?, LV$, LISTDICS, OBJ, CURDIC, and
PREVDIC provide information about the current dictionaries and dictio-
nary entries.

The directive 7, or its alias CURDIC, displays the name of the current
dictionary and the dictionary identifiers. If the variable FULDIC is not zero
the CLASS and location of each identifier is also displayed. If FULDIC is
zero only the names are displayed. FULDIC has this same effect when the
LV$ (below) directive is used.

The LV$ directive displays the identifiers in each of the dictionaries in
the current list from ENVLIST through LASTDICP. It also lists the dic-
tionary name and count of items for each dictionary. All currently available
names are listed in the order in which they occur in the dictionary. Note
that, due to the dictionary hashing technique (See Section 9.7), this pro-
duces a listing which is “approximately” in alphabetical order. However,
after the first character of the name the order will generally not be lexically
correct. The information which is listed is the VSTORE address where the
name was set and the class to which the name belongs.

The directive LISTDICS lists the name and item count for each dic-
tionary in the current list from ENVLIST through LASTDICP.

The directive OBJ <object name> lists the properties and body of
any object whose CLASS is known within the compiler. Specifically, if the
object is a CLASS the syntax, generative and setting actions are shown, if
the object is a FN or DIR the object text is displayed, if the object is a
MACRO the text is displayed and if the object is a DICT, the identifiers in
that dictionary are displayed. The properties shown are the shunt priority
and the status word. In relevant cases the interpretation of the status word
is printed. For example, after status 256 ”Identifier not set.” is printed.

The directive PREVDIC displays the identifiers in the “previous” dic-
tionary. On the first use of PREVDIC, after a use of CURDIC, PREVDIC
will display the contents of the dictionary previous to the current active
dictionary. If PREVDIC is referenced again, it will display the contents of
the next previous dictionary. Further references provide displays of further
dictionaries until the end of the dictionary list, at which point the cycle
will repeat.

Directives and Immediate Execution 109

8.7 Summary of Compiler Directives

The following table lists all normally available compiler directives with a
brief description. Refer to the index for detailed descriptions of the use
of each directive. A display of all idenifiers in the compiler dictionary
MAINDIC is easily obtained by: OBJ MAINDIC. The compiler directive
UNLOCK INTDIC (this is the replacement for the old ICL$) makes avail-
able all internal compiler identifiers. These identifiers are not usually re-
quired. They are defined in the compiler text and are introduced in the
dictionary INTDIC.

Table 8-1. Compiler Directives

Directive Description

! close body of immediately executable text
3 convert HEX constant
’ compile string constant
(delimit precedence operation
) delimit precedence operation
s terminate shunt action
comments follow
\ dictionary reference
% dictionary reference
(determine evaluation order
) determine evaluation order
set an identifier to a location counter

;13 C/R character. Ends current input line
? display current dictionary contents
Q compile address constant

compile character constant

& compile evaluated constant

BLOCK open local identifier block

CDUMP write VSTORE to a file

CURDIC display current dictionary contents
D$ decompile an area of storage

DATA set data state

DPRMPT set prompt

ENDBLOCK close local identifier block

EQV set an identifier to a parameter
FORGET remove identifier

ICL$ UNLOCK INTDIC

LCODE enable listing of VM(M) object code
LIST enable listing of source

LISTDICS list names of all active dictionaries
LOCK exclude dictionary from lookup path
LOCS enable listing with location counters
LV$ display identifier information
MINUS compile negative integer constant
NOLIST disable listing

NOPRMPT turn off prompt

NOW open body of immediately executable text

OBJ display body of identifier

110 Machine-Independent Organic Software Tools

OBREAK
PAGE
PREVDIC
PRIORITY
PROG
RCL$
RD-ONLY
RECPOOL
REF
RENAME
RESERVE

UNLOCK
VSTOREMAP

close output file and redirect output
skip to a new listing page

display contents of previous dictionary
set identifier priority

set program state

LOCK INTDIC

make dictionary not modifiable
show RECPOOL usage

reference a directive as a function
rename identifier

reserve data space

redirect input to specified file
redirect output to specified file

exit the VM

enable or disable instruction trace
reference PAGE and print heading
include dictionary in lookup path
show VSTORE usage

8.8 Problems

8.8.1 Problem 1

Write a directive named HELP which prompts the user for the keywords
DIR, FN, VAR, and MACRO and prints a short description in response to

each keyword.

8.8.2 Problem 2

Use the D$ directive to display the object text of the RESERVE directive.

8.8.3 Problem 3

Write a directive which acts like D$ but requires only the starting address

and displays object text until the next EXIT.

8.8.4 Problem 4

Why do the D$ and T$ directives not need to be referenced from within a

NOW...! sequence?

Directives and Immediate Execution 111

8.8.5 Problem 5

Write directives similar to the LV$ directive which list dictionary records
selected by class and by setting address range. This problem could be solved
directly, or after study of the text of the LV$ directive which forms a part
of the distributed machine-readable system.

9. Lists and Free-Space Management

9.1 Introduction

Within the MINT compiler a number of facilities exist to acquire and release
areas of free storage, to push and pop data to and from stack-like lists and
to manage such lists. This Chapter describes the functions that are an
integral part of the compiler and may be freely used by the user as part of
the run-time system.

9.2 Basic List Structure

The basic list structure which is supported by compiler functions is a lifo
(last-in-first-out) forward linked structure. The first record in the list is
addressed by a pointer. Each subsequent record is pointed to by the first
word of the current record. Records of any length may be chained in the
list. Figure 9-1 shows the structure of these lists. The last record in the
list contains a pointer whose value is zero to indicate the end of the list.

listp — link » link » link > 0

item 1 item 2 item 3 item 4

Figure 9-1 Basic List Structure

These records were pushed (See Section 9.5 for the item manipulation func-
tions) onto the list in the order 4, 3, 2, 1. The first removed item would be
item 1.

114 Machine-Independent Organic Software Tools

9.3 Adding to and Removing from a List

Two functions are provided which add a record to the top of a list and
remove the top record from a list. These are respectively:

JOIN
DETACHED.

9.3.1 The JOIN Function

The JOIN function is referenced as follows:

JOIN (@block, @listp)

where the first parameter is the address of a record to be linked into the
list, and the second parameter is the address of a variable to be used as
the list pointer. The effect of referencing JOIN is that the address of the
record is stored in the list pointer, thus making the record the top of the
list. The original content of the list pointer is stored into the first word of
the record, thus linking it to any previous blocks in the list.

9.3.2 The DETACHED Function

The DETACHED function performs the opposite action of JOIN and is
referenced as follows:

DETACHED (@listp)

where the single parameter is the address of a list pointer. The effect of
a reference to DETACHED is that the address of the first record on the
list is obtained on the stack. The content of the first word of the detached
record is stored into the list pointer. Thus,

DETACHED (@listp) -> @blokaddr

results in the address of the detached record being stored in the variable
blokaddr. At the same time the list itself is adjusted by storing the contents
of the first word of the detached record into listp, i.e. the previously second
record in the list becomes the top one.

9.4 Free-Space Management

The compiler manages a data area termed free-space. This space is allocated
at the high end of data-space. Free-space provides an area from which blocks

Lists and Free-Space Management 115

of storage of various lengths may be acquired as working space. When such
blocks of storage are no longer needed they may be JOIN’ed to a list pointer
called a free-space list and thereby made available for later use. A free-space
list is a two word record containing:

e List pointer
e Storage block length.

Thus:
VAR fslist: 0,8

describes a free-space list (initially empty). The length of the blocks in the
list is 8 storage units.

9.4.1 Acquiring Free-Space

Free-space blocks may be acquired by referencing the compiler function
NEXTFREE as follows:

NEXTFREE (@fslist)

where the parameter is the address of a free-space list. The NEXTFREE
function obtains on the stack the address of a block of storage of the length
prescribed by the free-space list. It does this in the following manner. If
the free-space list is not empty (i.e. list pointer non-zero) NEXTFREE
references DETACHED to remove the top free block on the list. If, on the
other hand, the list is empty (list pointer zero) the number of storage units
required is taken from the free-space area and the address of the block thus
obtained is passed back to the user. Note that in this case the free-space list
pointer (fslist) is unaffected as the list itself is still empty. Thus, consider:

VAR bufaddr:0
VAR buflist:0, 100
NEXTFREE (@buflist) -> @bufaddr .

In this example the address of a 100 word block of storage is acquired from
free-space and stored in the variable bufaddr. The free-space list is called
buflist.

9.4.2 Releasing Free-Space

Free-space blocks are released by simply JOIN’ing them to a free-space list.
Thus,

JOIN (bufaddr, @buflist)

116 Machine-Independent Organic Software Tools

(using the same variables as those described in the previous Section) per-
forms the following action: The value of the variable bufaddr is the address
of a 100 word block of storage. This block is JOIN’ed to the list pointer, bu-
flist. A subsequent reference to the function NEXTFREE would obtain this
buffer address. Note that the user is responsible for releasing the correct
size of block to the appropriate free-space list.

9.5 Item Lists

The compiler itself makes considerable use of two word records called item
blocks. These item blocks are linked into a number of internal lists and
are used to store single word items (see Figure 9-1). Such internal lists are
effectively software stacks. The functions described below are provided to
support these stacks.

9.5.1 The PUSHD Function

The PUSHD function is used to store a single value into an item block and
JOIN the item block onto a list. Its form of reference is:

PUSHD (item,@listp)

where the first parameter is any item (value, buffer address, etc.) and the
second parameter is the address of a list pointer. PUSHD operates in the
following manner. First, the function NEXTFREE is referenced to acquire
a two word item block from free-space. Secondly the passed item is stored in
the second word of the item block. Finally the function JOIN is referenced
to link the item block to the specified list pointer.

The PUSHD function provides a means of obtaining an object on a
software defined stack.

9.5.2 The POPUP Function

The POPUP function is referenced to discard the top item and its as-
sociated item block from an item list. The form of the POPUP function
reference is:

POPUP (Qlistp)

where the single parameter is the address of a list pointer. The POPUP
function references DETACHED to remove the top item block from the
list and references the function JOIN to release the block to the internal

Lists and Free-Space Management 117

two word free-space list. No result is returned from the POPUP function.
It therefore operates in a manner analogous to the LOSE operator.

9.5.3 The POPPEDUP Function

The POPPEDUP function is referenced to obtain on the stack the item
contained in the first item block of an item list, and POPUP the item block.
The form of the POPPEDUP reference is the same as that for POPUP.
Thus,

VAR item:0
POPPEDUP (@listp) -> @item

obtains the top item from the item stack pointed to by listp and stores
it in item. The POPPEDUP function is thus the converse of the PUSHD
function. Note that the top item of a list may also be obtained without
discarding it by the expression:

VAL (1 FROM listp)

since listp contains the address of the item block, and the VAL obtains the
contents of the second word which is the item itself.

9.5.4 The FOREACH Function

The FOREACH function applies a passed function to each item in an item
list. Its reference form is:

FOREACH (@listp,@function) .

It operates by obtaining the item from each entry in the list and refer-
encing the passed function. The passed function is expected to remove the
obtained item from the stack. For example, consider a list of items which
are addresses of store locations whose contents must be adjusted by a factor
rbias. Then

FOREACH (@listp, [DUMP, VAL(TEMP)-rbias->TEMP])

will, for each address in the list, reference the anonymous function [...]. The
anonymous function references DUMP to put the address into the variable
TEMP. The content of the location is adjusted by rbias and the result
stored back into the location whose address is in TEMP. Note that TEMP
is used as a pointer.

118 Machine-Independent Organic Software Tools

9.5.5 Deleting an Item List

The function CLEARLST(<@listp>) is available to perform a POPUP on
each item in the list.

9.5.6 Operation on Characters of a String (FORCHS)

The FORCHS function provides a means of applying a procedure to each
character in a string. It is referenced as follows:

FORCHS(<string address>, [function])

where [function] is a function that expects a character on the stack and
returns its character result on the stack. FORCHS obtains a character from
the string, references the function, and pushes the top item on the stack
back into the character position of the obtained character. This operation
is performed on each character in the string in order.

9.6 Record Lists

In many situations, instances of a record or table of pointers and data items
are required to be saved, and at some later stage restored. The compiler
provides functions to perform these operations. The functions involved may
be compared with the PUSHD and POPPEDUP functions described above,
but instead of saving and restoring single items they operate on contiguous
blocks of store and save and restore the contents of the entire block of
store. Such blocks, or records, are described by a record list pointer which
consists of two items:

e List pointer
e Record length.

Thus, in the sequence:

VAR record:

VAR entry1:0,100

VAR entry2:abc def

VAR entry3:MINUS 10

VAR rlistp:0,&(@rlistp ADIFF @record)

the variable rlistp forms a pointer to such a record list. The first word is the
list pointer (initially empty) and the second word is an evaluated constant
whose value is the length of the record (5 in this example).

Lists and Free-Space Management 119

The list structure which is used by these functions is shown in Figure
9-2. The Figure shows the structure in its state after four PUSHDREC ref-
erences (pushing the records in the order 4, 3, 2, 1) followed by two POP-
UPREC references. Initialization is automatically carried out by PUSH-
DREC (See below).

rlistp — 0
NEG(addr)
record 3 record 4
free-record list record 2 record 1
L 0
length

Figure 9-2 Record List Structure

9.6.1 Saving Records
Records are saved by referencing the PUSHDREC function as follows:

PUSHDREC (@record,@rlistp)

where the first parameter is the address of the record to be saved and
the second parameter is the address of a list pointer record. PUSHDREC
operates on two lists. After initialization, the list pointer record (rlistp)
contains the addresses of these two lists. Initially, the list pointer record
contains zero in the first entry and the intended record length in its second
entry. As a part of initialization, PUSHDREC stores NEG of a list address

120 Machine-Independent Organic Software Tools

in the second entry. Thus, the sign of the value in the second entry is used
to indicate if initialization is to be carried out. PUSHDREC carries out the
following steps:

1. If the second entry of the list pointer record is positive NEXTFREE
is referenced to obtain a two word item record. The length from the
second entry in the initial list pointer record is moved to the second
word of the item record, and NEG of the address of the item record is
stored in the second word of the list pointer record. If the second entry
in the list pointer record was already negative PUSHDREC proceeds
to the next step below.

2. NEXTFREE is referenced with the address of the item record, in order
to obtain a record of the required length. Initially, the item record
will indicate an empty list (zero in the first entry) and space will be
acquired from free-space.

3. The record to be saved is copied into the obtained record.

4. The address of the obtained record is stored in an item which is pushed
onto an item list by a reference to PUSHD using the first entry of the
list pointer record (rlistp) as the item list pointer.

9.6.2 Restoring Records

Records saved by the PUSHDREC function may be restored into any stor-
age area of the appropriate size by means of the POPUPREC function:

POPUPREC (@record,Qrlistp)

where the first parameter is the address where the record is to be writ-
ten, and the second parameter is the address of a record list pointer. The
POPUPREC function operates as follows. First the function POPPEDUP
is referenced to obtain the address of the saved record. Second the record is
copied into the user specified address. Finally the saved record is released
to the free-record list.

9.7 Variable Length Records

The compiler provides for the management of a pool of variable-length
records. This mechanism is used to manage the dictionary records which
are described in the next Section. The space for these records is acquired
from free-space in blocks as needed and space is recovered by recombining
released records as possible.

Lists and Free-Space Management 121

9.7.1 Acquiring a Record

The function which obtains a variable-length record is:

GETREC (Qrlength).

This function requires the record length as its parameter, and returns the
address of the record.

9.7.2 Releasing a Record

The function which releases a variable-length record is:

RELREC (@record, @rlength).

This function releases the record at the address given as the first parameter.
The second parameter must be the length of the record as specified in the
GETREC reference. It is necessary for the correct operation of the record
pool mechanism that only valid record addresses and lengths be used in
RELREC references.

9.8 The Dictionary List Structure

Dictionaries use a list structure similar to that described in Section 9.2.
The format of the records is shown in Figures 9-3 and 9-4. Each dictionary
record comnsists of a link word, a MINT formatted string, and three words
which contain the identifier address, class and level respectively. Note that
the link word in the last valid dictionary record contains the address of the
end of the dictionary (dicend). The record pointed to by dicend is not a
valid dictionary record. The dictionary records are variable-length records.
For an identifier of length N, the dictionary record length is:

5+ (N+3)/4).

Figure 9-4 depicts the structure of a dictionary record.

122 Machine-Independent Organic Software Tools

A A A A A A A A

| | | | | | | |

| | | | | | | |

| | | | | | | |
dicp —» dlink » dlink » dlink » dicend
Fig. 9-4 Fig. 9-4 Fig. 9-4 Fig. 9-4

| | | | | | | |

| | | | | | | |

v v v v v v v v

Figure 9-3 Dictionary List Structure

dlevel
dclass
daddr
dicp —» dlink
-
dnaml

Standard MINT
String Format <

Figure 9-4 Dictionary Record

Lists and Free-Space Management 123

Each dictionary has 64 dictionary lists, all of which link to the dictio-
nary end record. The selection of the correct dictionary list is based on a
hash function which uses the low order 6 bits of the first character of the
identifier name. This structure is simple, but provides quite short average
identifier search paths as long as the total number of identifiers remains
less than of the order of 1000. In addition, this provides an approximately
lexical ordering of entries in the dictionary.

9.9 B-Tree Data Access

The purpose of these routines is to provide a B-tree access structure for
storing and retrieving data items or records within MINT VSTORE. The
routines provide the following functions: initialization, storage of data for
a given key, deletion of data, and a function that permits operation on
each data item stored under a given key. Nodes in the tree are filled as
new keys are stored, and split when they become full. At present, there is
no provision for compacting the tree structure or deleting keys. If all the
data items for a given key are deleted the key sequence will remain, with
an empty item list at the end of it. Leaf nodes are split without increasing
the tree depth and all non-terminal nodes are split by introducing a new
node that increases the depth of its branch by one.

The node search function is supplied as an argument when a tree is
initialized. Nodes contain single-word entries for keys. However, the search
function may interpret these entries as addresses and thus may perform the
comparison on any user-defined structure.

9.9.1 B-tree Functions

The functions described below provide for creation and manipulation of
the B-tree data structures and access to the data.

9.9.1.1 BTINIT

This function creates the initial tree structure. It requires four arguments:
the address of a pointer to the tree (for future reference), the address of
the key compare function, and lower and upper limits for the expected key
values. Thus, a reference is:

BTINIT(<lower limit>, <upper limit>,[key compare function],
<tree pointer>)

124 Machine-Independent Organic Software Tools

The key compare function is a function which locates the correct entry in a
node, given the key. The user is required to provide this function in order
to permit the B-tree mechanism to be used with key structures of the user’s
choice. If the key is a one-word item it may be stored directly in the node.
Otherwise, the entries in the nodes should be addresses of key objects (such
as variable length strings). If the key entry in the node is an address then
the key values supplied for all other B-tree functions must be addresses of
compatible objects. The key compare function must be written to expect
three arguments and to return one argument. The three input arguments
are:

1. key. This is either a key value or the address of a key structure. It
must have the form used in all the other function references.

2. @first entry. This is the address of the first entry in the table to be
searched.

3. number of entries. Number of entries to search.

Each entry in the table pointed to by the second argument is two words
long. The key address or value is in the first word and a pointer is in the
second word. Therefore, the search routine should increment by two as it
compares table entries.

The returned argument is the address of the second word (pointer) of
the entry before the entry containing the key greater than or equal to the
argument key. If no key is found that is greater than or equal then the
address of the second word of the last entry is returned.

The address of the tree pointer is required as an argument in all of the
functions so that multiple trees may be in use at any time.

9.9.1.2 BTDEL

This function deletes the entire tree and returns all node and data item
records to the record pool. Its reference is:

BTDEL(<tree pointer>)

9.9.1.3 BTINSRT

This function inserts a data item under the key provided. Its reference is:

BTINSRT(<data>, <key>, <tree pointer>)

Lists and Free-Space Management 125

9.9.1.4 BTREM

This function removes all data items stored under the given key. Its refer-
ence is:

BTREM(<data>, <key>, <tree pointer>)
9.9.1.5 FORBTVAL

This function applies the provided function to each data item stored under
the given key. Its reference is:

FORBTVAL(<key>, [<function reference>], <tree pointer>)

9.9.2 Data Structures

There are two data structures: non-terminal nodes and leaf nodes.
They are shown below:

node leaf
parent parent
0 -1
no. entries no. entries
pointer 0
pointer —»f _key) pointer —» _key
pointer listp
| key | | key
pointer listp
i i i I
key		key
pointer listp

Figure 9-5 Node and Leaf Data Structures

126 Machine-Independent Organic Software Tools

9.10 Problems

9.10.1 Problem 1

Define an item list composed of the items 5, 3, 1, 7, 9, and 4.

9.10.2 Problem 2

Write a function to insert an item in the list defined in Problem 1 after a
given item value.

9.10.3 Problem 3

Write a function to sort the items in the list defined in Problem 1.

9.10.4 Problem 4

Define a record to contain names and addresses. Write a function which
will insert such records in a list in alphabetical order by the last (family)
name.

9.10.5 Problem 5

Write a function to delete a name from the list defined in Problem 4.

9.10.6 Problem 6

Write a function to print all records in the list defined in Problem 4 which
contain a given first name.

9.10.7 Problem 7

Write functions which perform according to the specifications of DUMP,
MOVE, JOIN, DETACHED, PUSHD, and POPUP. After these functions
are written, compare the text with the functions as given in the compiler
text.

10. The External and String Operators

10.1 Introduction

The MINT compiler contains a set of procedures and primitives for han-
dling strings, individual characters within strings, and for communicating
into and out of VSTORE. This Chapter describes these procedures and
primitives.

MINT character and string handling depends on characteristics of the
ISO/ANSI character set. Correct operation will not result if another char-
acter set is used. The full ANSI set is supported except that NUL (value 0)
is treated as the end-of-string indicator. (However, a NUL character may
be transmitted by use of the value 0400, since the end-of-string test is a
test zero on all eight bits in the character field.) Variations in the graphic
representations of ISO/ANSI characters, such as national definitions dif-
ferent from the U.S. definition, will not affect MINT operation, but may
affect readability. This will be especially true if such characters as [, |, @,
<, or > have alternate graphics.

10.2 MINT String Format

MINT strings consist of a one word character count followed by a series
of ANSI characters stored 4 characters to a 32 bit MINT word. The first
character in a word normally occupies the low order (least significant) 8 bit
byte, and the characters follow in increasing byte order as shown in Figure
10-1. The high order bit of each character should normally be zero.

The order of the characters in a word is possibly implementation de-
pendent. Some implementations may have the order within a word reversed
from the usual low order byte first sequence. This reversal may be required
for efficiency. (The PDP11 was an example of a machine in which reverse
order is required and others still exist.) If the standard MINT facilities are
used, the character order is not normally significant. The main exception to
this rule is the creation of portable format output on one system which is
to be loaded into another system which uses a different character order. A

128 Machine-Independent Organic Software Tools

procedure is available for carrying out the character reversal transformation
which is required in this case. This is discussed more fully in Chapter 14.

CAP String

addr > 6

3 ir t s
g n

Figure 10-1 MINT String Format

A MINT formatted string is defined as shown in Figure 10-1. MINT
formatted strings are referenced by means of a Character Address Pair
(CAP). A CAP consists of two storage units (See Figure 10-1) the first of
which contains the address of the first word of the string, and the second
contains a character index. The index is an integer number, the first char-
acter in the string being referenced by an index value of 0. Thus in Figure
10-1 the CAP references the character “i”.

10.3 Initialization of External Segments

It is necessary to initialize access to any external segment except segment
zero. This is done by means of the OPENF primitive.

10.3.1 The OPENF Primitive

The OPENF primitive is a Virtual-Machine operator which requires two
parameters. It opens an external segment for input, output, or both. The
first parameter determines the type of initialization to be performed. Table
10-1 shows the standard type definitions. Specific Virtual Machine imple-
mentations may extend the type definitions to provide for environment
dependent requirements. The standard types given in Table 10-1 should
not be changed.

The External and String Operators 129

Table 10-1. OPENF Operation Types

type meaning

Sequential input

Sequential output

Direct access input/output
Magnetic tape input/output
Communications input/output

T W N

The second parameter is the address of a MINT formatted string which
is the name of the segment to be opened. The content of the string is
implementation dependent, as is the number of segments which may be
open concurrently.

OPENTF returns one parameter which is the index assigned to the ex-
ternal segment. This number is a positive integer greater than zero. How-
ever, the value is otherwise implementation dependent and should not be
considered to be fixed for any given segment name. The index is used to

reference an opened segment for any subsequent operations. Thus a typical
OPENTF reference is:

OPENF(1, ’external name’) ->@index1 .

This sequence has the effect of initializing the external segment whose name
is “external name” for sequential input, and storing the segment index in
the variable index1.

If type index 3 is used, SEGIO should be used to reference the external
segment. SEGIO provides record-structured input and output. It is fully
described in Section 13.5.12.5.

10.4 Input Facilities

Input consists of characters, which may be composed into strings. The
Virtual Machine obtains characters, using the INCH primitive. A function,
GETSTR, is available which uses INCH to compose strings. Each string
may contain up to a specified number of characters, and is terminated by
the carriage-return character. Input is obtained from external segments.
These logical segments may be files, devices, or other external facilities.
Each active (open) external segment has a unique index. The indices are
assigned by the VM (M) Virtual Machine. Segment index zero (0) is always
associated with the primary I/O device.

130 Machine-Independent Organic Software Tools

10.4.1 The INCH Primitive

The INCH primitive is a Virtual Machine operator which reads a character
from an external segment. It requires one argument which is the input
segment index. It returns a single argument which is the next character
from the segment. If the end of the segment has been reached INCH will
return the hex value 0x100 to indicate the end-of-segment condition. The
form of an INCH reference is:

INCH(index1) .

This causes the Virtual Machine to obtain the next character from the
segment whose index is index1, or obtain the value 0x100 in case the end-
of-segment has been reached. The Virtual Machine uses the C/R character
to indicate end-of-line. Thus, if a segment contained the two lines:

abed

Xyz

the sequence that would result from successive INCH references would be:

abcdC/RxyzC/R 0x100 0x100 ...

10.4.2 The GETCH Primitive

The GETCH primitive obtains on the stack a single character from a MINT
formatted string. It requires a single parameter, namely the address of a
CAP referencing the string. The form of the GETCH reference is:

GETCH(QCAP) .
If the CAP in this example were that illustrated in Figure 10-1 then the

(3550

character “i” would be obtained on the stack. The character index is not
incremented.

When a GETCH operator is executed and the CAP parameter points
to a character beyond the range of the string, a zero (0) value will be
returned. Thus, a zero character value should not be contained within a
string.

10.4.3 The GETSTR Function

The GETSTR function uses the INCH primitive to read characters from an
external segment and compose them into a MINT string. It requires three

The External and String Operators 131

parameters which are the segment index, the maximum number of words
to be used in the buffer, and the address of the buffer area in which the
string is to be composed. The form of the GETSTR reference is:

GETSTR (index1,mxlength,@inbuf) .

GETSTR references INCH to obtain characters. These characters are com-
posed into a MINT formatted string in inbuf. Input characters are read un-
til an end-of-image condition (usually a C/R character), or until the buffer
length limit (mxlength) is reached. The last character in a string formed
by GETSTR is always a carriage-return (C/R). Since the first word of the
input buffer contains the string length and a C/R is appended at the end,
the number of words required for an input string of length N characters
(not including the C/R) is:

L = 2+(N/4) .

The end-of-file condition is indicated by means of the character count
contained in the first word of the input buffer. A character count of zero
is treated as the end-of-file condition. Note that an empty string will not
have a character count of zero since the C/R character must be present,
and is always included in the character count.

10.5 Compiler Input Facilities

The compiler uses standard input facilities to read its input. User text may,
of course, reference the compiler input mechanisms.

The compiler input CAP consists of the variable CURCHS, containing
the address of the current input image, and the variable CURCOL, which
is the character index. All the input procedures described in the following
Section operate on CURCHS, thus addressing the compiler input image.
SIUNIT contains the compiler’s current external segment index for compiler
input. SIUNIT is an item in the compiler record whose list is pointed to
by the variable INPST. This record contains SITUNIT and LINENO, the
current input line number.

The MINT input routine does not treat the end-of-line as significant.
Lines are logically concatenated so that expressions of any length may be
composed. See Section 2.5.5 for handling of multi-line literal strings.

10.5.1 The SI Directive

All compiler input procedures operate on the external segment whose index

132 Machine-Independent Organic Software Tools

is contained in the variable STUNIT. The SI directive may be used to direct
the compiler’s input stream to another external segment. The form of the
SI reference is:

SI character-string .

The character-string is a string, terminated by a blank character or
carriage-return, which is transferred to the OPENF primitive to specify
the external segment name. The record containing STUNIT and LINENO
is pushed onto the record list whose pointer is INPST, SIUNIT is set to the
value returned by OPENF, and LINENO is set to zero. When an end-of-file
is encountered the current input is closed and a POPUPREC(@SIUNIT,
@INPST) is performed. This restores the previous input segment and recov-
ers the line number within that segment. When an end-of-file for segment
index zero is detected the MINT system is terminated.

10.5.2 The READ function

The READ function reads a new input string into the compiler’s input
buffer. The buffer is identified by the CAP CURCHS. The variable CUR-
COL contains the current character pointer (i.e. it is the second word of the
CAP). If CURCHS does not point to a buffer, READ will assign a buffer.
The variable SIUNIT is used to obtain the input segment index. On each
READ the variable CURCOL is set to point to the first character of the
string. The READ function requires no parameters.

10.5.3 The READINP function

The READINP function uses the READ function to read a new image into
the compiler’s input buffer. In addition, it updates the compiler’s output
listing line number (LINENO) and then applies any listing options (See
Chapter 3).

10.5.4 The INSTRING Function

The INSTRING function constructs a MINT formatted string from the
current compiler input string. It requires two parameters:

1. Address of destination pointer
2. Address of delimiting function.

The destination pointer contains the address where the string is to be built.
On return from INSTRING this pointer contains the address of the first

The External and String Operators 133

word beyond the composed string. The delimiting function is applied to
each character copied, and must obtain a Boolean object. String compo-
sition continues until a false value is obtained by this function. Thus, for
example

DIR :ENTRY
INSTRING(@DLOC, [CHAR NE #7))

illustrates how the quote directive composes a string. The destination
pointer is the compiler’s data location counter, DLOC. The delimiting func-
tion tests if the current character (CHAR, see below) is a quote. If it is,
then the string composition terminates. During string composition the IN-
STRING function increments a counter, NOCHS. This counter contains
the number of characters copied into the destination string. NOCHS may
be tested in the delimiting function, or referenced subsequently.

10.5.5 The BLANKS Function

The BLANKS function skips blanks in the input image. It requires no
parameters. CURCOL is incremented to point to the next non-blank char-
acter.

10.5.6 The ININT Function

The ININT function generates an integer number from a string of digits
in the input image and obtains the integer on the stack. The CURCHS
CAP must be positioned on a digit when ININT is referenced. Thus, if the
current input contains blanks followed by one or more digits,

BLANKS
ININT -> @Qvalue

will store the resulting integer in value. The maximum value correctly ac-
cepted by ININT is 232 — 2. If the current character is not a digit, zero is
returned and CURCOL is not incremented.

10.5.7 The INHEX Function

A function INHEX is included for reading numbers in standard HEX for-
mat. It operates just like ININT, but it expects the digits 0-9,A-F.

134 Machine-Independent Organic Software Tools

In addition, the directive $ reads the immediately following constant
using HEX format. Thus, VAR XX:$FF would assign the value 255 to the
variable XX.

10.5.8 The CHAR Function

The function CHAR obtains on the stack the current character from the
compiler’s input image. It requires no parameters. If CHAR is referenced
when the character index, CURCOL, is beyond the end of the string, au-
tomatic end-of-string action is performed. This is generally a reference to
the function READINP. Note that CHAR does not increment CURCOL,
and does not act on the semicolon to translate special sequences.

10.5.9 The ADVCH Function

The ADVCH function advances the character pointer, CURCOL. It re-
quires no parameters. An example of its use is the BLANKS function:

FN BLANKS:ENTRY
WHILE CHAR EQ # START
ADVCH
REPEAT
EXIT .

10.5.10 The NEXTCH Function

The NEXTCH function obtains the current character from the input im-
age, and advances the character pointer, CURCOL. If the character so ob-
tained is a semicolon (the escape character), special processing is applied,
otherwise the character is returned. The semicolon indicates that subse-
quent characters are to be translated to a single unique character. Thus,
for example, ;CR is translated to the C/R character (octal value 015).
The sequences which have defined translations are contained in a table
named ESCTAB. The NEXTCH function attempts translation whenever a
semicolon is detected. If the translation process is successful (i.e. a match
is found in ESCTAB), the corresponding single character is returned and
CURCOL is advanced beyond the matched sequence. If it is not successful,
the character beyond the semicolon is returned and CURCOL is positioned
beyond it. Thus,

5 will return a single ;

The External and String Operators 135

;FF will return a form-feed (014)
;CR will return a carriage-return (015)
;S will return a space character (040)

; will return a single quote character (054)

The NEXTCH function requires no parameters.

10.5.11 The DIGIT Function

The DIGIT function references CHAR and determines if the character is
a digit. It returns a Boolean true if CHAR is a digit and false otherwise.
The DIGIT function definition is:

FN DIGIT: ENTRY
CHAR GE #0 AND CHAR LE #9
EXIT .

10.5.12 The LETTER Function

The LETTER function references CHAR and determines if the character is
alphabetic. It returns a Boolean result accordingly. The LETTER function
definition is:

FN LETTER: ENTRY
CHAR GE #A AND CHAR LE #7
OR (CHAR GE #a AND CHAR LE #z)
EXIT .

10.5.13 The FNAME Function

The purpose of the FNAME function is to create a string from the current
compiler input source into a temporary buffer. The address of the string is
returned on the stack. FNAME requires no arguments. FNAME references
BLANKS and then references INSTRING to read the string, with the ter-
mination condition set to a blank or C/R. The temporary storage which is
used for the string starts at the current DLOC value. The value of DLOC
is not changed.

10.6 Output Facilities

Output characters may be directed to the primary I/O device (segment

136 Machine-Independent Organic Software Tools

index zero), or to other external segments in a manner analogous to that
described for input.

10.6.1 The OPCH Primitive

The OPCH primitive transmits a single character to the output segment.
It requires two parameters, the segment index, and the character to be
transmitted. Thus, for example:

OPCH (index2, #x)

[

has the effect of transmitting the single character “x”.

If the character C/R is transmitted the current image is considered to
be terminated. If the implementation is line image based, the text message
may not be transmitted until the C/R character is received. If it is desired
to embed a carriage-return within an image, octal 0215 should be used as
the value of the character. In this case the character will not be recognized
as the image terminating character. Instead it will be treated as a normal
character. Since bit 8 of the character is the parity bit, it will be reset by
the output primitive.

10.6.2 The PUTCH Primitive
The PUTCH primitive stores a single character into a string. It requires
two parameters:
1. The address of a CAP
2. The character to be stored.
The form of the PUTCH primitive is:

PUTCH (QCAP,#$) .

If the CAP is as shown in Figure 10-1 then the character “$” would replace
the character “i”. The PUTCH primitive does not increment the character
index. The character count in the first word of the string is unaffected.

10.7 Compiler Output Facilities

The procedures described below provide the facilities used by the compiler,
and available for users, for output to external segments.

The External and String Operators 137

10.7.1 The SO Directive

All compiler output functions operate by use of the segment index con-
tained in the variable SOUNIT. The SO directive may be used to direct all
compiler output to a specified segment. The form of the SO directive is:

SO character-string .

The SO directive uses the function FNAME to create the segment-name
string and passes this string to the OPENF primitive. The returned index
is stored in SOUNIT.

10.7.2 The OBREAK Directive

The OBREAK directive closes the output segment whose index is given
by SOUNIT, and redirects the compiler output to segment index zero.
OBREAK requires no parameters.

10.7.3 The OUTST Function

The OUTST function transmits a MINT formatted string to the current
output segment as designated by SOUNIT. It requires as a parameter the
address of the string to be output. The form of the OUTST function is:

OUTST("This is a string’) .

10.7.4 The OPINT and OPINTD Functions

The OPINT function converts an integer to character form and sends the
characters to the output segment designated by SOUNIT. The OPCH prim-
itive is used to transmit the characters. If the conversion base is decimal
(See Section 10.7.6) the number is treated as a signed integer and, if the
integer is negative, the digits are preceded by a minus sign. In all other
cases the digits are preceded by a blank character. The OPINT function
requires one parameter which is the integer to be converted. Thus, its form
is:

OPINT (arithmetic-expression).

The OPINTD function converts its argument as an unsigned integer.
No space or minus sign is output preceding the digits. Use of OPINTD is
appropriate if, for example, address values are to be output. Its form is:

138 Machine-Independent Organic Software Tools

OPINTD (arithmetic-expression) .

The OPINT and OPINTD functions convert the supplied number ac-
cording to the information provided by the SETOPP and SETBSE func-
tions, which are described in the two following Sections. If the number of
digits required for the number exceeds the available field width the first
printed digit will be a question mark. The remaining field is filled by the
least significant digits.

10.7.5 The SETOPP Function
The SETOPP function establishes the format of numbers output by the
OPINT and OPINTD functions. It requires two parameters:

1. Pad character (PAD)

2. Field width (WIDTH).

The pad character is used to left fill the printed number. The field width
is the total number of digits and pad characters to be output. A width of
zero provides variable width output. In addition, the variable CWIDTH is
set to the width actually used on each OPINT or OPINTD reference. The
width used when WIDTH has been set to zero is the width required to
display the digits. Thus,

SETBSE(#0, 0, 10), OPINTD(123)

will display 123 without any leading or trailing blanks. After this operation
the value of CWIDTH will be 3.

In addition to the number of characters specified, a blank or minus
sign is output as the first character by OPINT. Thus,

SETOPP(#0,5), OPINT(123)
yields 00123

and

SETOPP(# ,7), OPINT(MINUS 4567)

yields - 4567 . The OPINT and OPINTD functions always reset the PAD
character to zero (#0) after printing.

10.7.6 The SETBSE Function

The SETBSE function resets the conversion base used by OPINT and

The External and String Operators 139

OPINTD. It also references SETOPP to set the pad and width values.
It requires three parameters. The first two are passed to SETOPP. The
last one is used to set the conversion base. The bases which are available
are: 16, 10, 8, and 2. Thus, for example:

SETBSE(#0,4,16)
OPINT(255)

yields OOFF .

When first referenced, the compiler operates as though a

SETBSE(#0,5,10)
had been performed.

The identifier BASE contains the value of the current conversion base.
It should only be modified through a reference to SETBSE.

10.7.7 The OPNL and OPFF Functions

The OPNL function causes transmission of a carriage-return (C/R) char-
acter to the current output segment as defined by SOUNIT. In Virtual
Machine implementations which interface to facilities which require line
images no data are actually transmitted to the segment until this charac-
ter is received by the Virtual Machine. Thus, it is necessary to transmit
C/R, usually by use of OPNL, after a series of one or more references to
OPINT, OPINTD, or OUTST in order to cause a complete line of output.
The OPFF function causes transmission of a form-feed (F/F) character,
and thus is intended to cause a skip to a new page when printing is per-
formed.

10.8 Closing of Segments

Both input and output segments are closed by the CLOSEF primitive which
is described below. The primary I/O streams do not need to be closed.

10.8.1 The CLOSEF Primitive

External segments are closed by the CLOSEF primitive which requires one
parameter. The parameter is the segment index of the segment to be closed.
Thus, an example reference is:

140 Machine-Independent Organic Software Tools

CLOSEF (index1) .

An attempt to execute I/O functions using an index of a segment which
is not currently open will result in a Virtual Machine error. However, it is
not a requirement that each index returned by OPENF be unique. Each
new index must differ from any of the currently open indices. Thus, indices
may be reused. For this reason it is good practice to reset to zero any
variables in which an index was stored when a CLOSEF is performed on
that index.

10.9 The String Matching Primitives

There are two primitives which carry out string matching operations. The
MATCH primitive compares a key string against a string addressed by a
CAP. The DICMATCH primitive compares a series of linked key strings
against a string addressed by a CAP. The DICMATCH operation is carried
out by repeated application of MATCH.

10.9.1 The MATCH Primitive

The MATCH primitive provides the means of determining whether or not
a given string contains a specified sub-string. MATCH expects two input
parameters: the address of a key string and the address of a CAP. A char-
acter by character compare is carried out starting with the first character
of the key string and the character pointed to by the CAP. Successive char-
acters in each string are compared until a mismatch is found or until an
end-of-string condition occurs. If the end of the key string is reached the
string match condition is indicated by obtaining a Boolean true on the
stack. The CAP character pointer is reset to point to the character after
the last matched character. Otherwise, a Boolean false is obtained and the
CAP is unchanged. If the key string is longer than the sub-string to which
the CAP points no match is possible and a false is always returned. For
example:

VAR STR1: 'This string is long enough’
VAR CAP1: @QSTR1

VAR CHRNO: 5

VAR KEYSTR: ’string’
MATCH(QKEYSTR, @QCAP1)

will return a true result, and CHRNO will be set to 11.

The External and String Operators 141

10.9.2 The DICMATCH Primitive

The DICMATCH primitive allows matching a list of key strings against
a CAP-addressed sub-string. DICMATCH applies the MATCH operation
using each of the key strings in the list until a match is found or until
the end of the key string list is reached. Three parameters are required for
DICMATCH. These are: the address of the list start pointer, the address of
the list end pointer, and the CAP address. If a match occurs, DICMATCH
returns the address of the record prior to the matched record and the CAP
is updated to point to the character after the last matched character. If no
match occurs the address of the list end pointer is returned and the CAP
is unaffected.

10.10 The COMPILE Function

Source text is compiled into object text by means of a reference to the
COMPILE function. The COMPILE function expects as its single argu-
ment the address of a string, which is the source text. If COMPILE is
referenced in normal input, the compiler will compile the addressed string
and then return to the point of reference just as is done with any other
function. Therefore, text may be constructed as a string and then com-
piled whenever this operation is required. For example, a string could be
obtained from an external segment and compiled by means of:

VAR INBUF: RESERVE 42

VAR MAXL:80

VAR INUNIT:0,
OPENF(1,’sourcetext’) -> QINUNIT,
GETSTR(INUNIT,MAXL,QINBUF),
COMPILE(QINBUF) .

The compiler’s main processing loop consists of repeated application
of COMPILE to the source input strings.

10.11 Problems

10.11.1 Problem 1

Define a “dictionary” list which contains records made up of a field for the

142 Machine-Independent Organic Software Tools

dictionary word and a field for the definition of the word. Write a function
which searches the dictionary for a given word and prints the definition if
a match occurs.

10.11.2 Problem 2

For the list used in Problem 1 write a function which accepts a list of
keywords and prints each dictionary entry whose definition field contains
any one of the keywords.

10.11.3 Problem 3

Using the MATCH primitive, write a function which performs according
to the specification of the DICMATCH primitive.

10.11.4 Problem 4
Write a set of functions to copy an external segment and optionally display
it on the primary (segment zero) I1/0 device.

10.11.5 Problem 5

Write a function which compiles the source text contained in an external
segment. Consider at least two alternative methods of implementing this
function.

11. The Syntax Analysis System

11.1 Introduction

The syntax analysis system (M-TRAN) is a product for interpreter or com-
piler writers (or indeed the implementors of any language or dialog system)
permitting the definition of the syntactic structure (or grammar) of a lan-
guage. This obviates the need to write a program to analyze the language
text. Thus, implementations may be more compact, more uniform, and
more easily managed.

The system permits generation of VM (M) Virtual Machine operations,
or MINT text should the user wish this. This gives an implementation the
same portability as MINT itself. The user is entirely free to bypass this of
course, and generate any form of text he wishes.

The system is a top-down, fast-back analyzer which uses a generaliza-
tion of Backus Naur Form (BNF) for syntax definition. The main general-
ization is the fact that normal MINT functions may appear in the phrase
definitions. Since M-TRAN is written in MINT it is an extension of the
basic system. M-TRAN makes use of the CLASS directive to create the
class PHRASE, which is the basic component of the system.

11.2 Phrase Structure Analysis

The syntax analyzer operates on BNF' definitions which are implemented
in the form of MINT functions. A BNF definition must first be introduced
in class PHRASE, and then defined as described below.

11.2.1 Phrase Introduction

Identifiers in class phrase are introduced in exactly the same manner as
identifiers in other classes. Thus,

PHRASE const

144 Machine-Independent Organic Software Tools

introduces the identifier const in class phrase.

11.2.2 Phrase Definition

A phrase definition consists of the phrase identifier followed by ::=, and
then the phrase elements which direct the parsing. The phrase entry must
always begin with the ::=. This is followed by one or more alternatives
separated from each other by //. Thus, phrase definition takes the form:

The alternatives themselves consist of one or more functions, which are ex-
ecuted in sequence. These functions may be any function, but will generally
be either other phrases, or parsing functions. Thus,

item ::= ident // number .

sets, and defines the characteristics of, the phrase identifier item. After
completion of a set of phrase definitions, the directive PEND must be
referenced to return the compiler to normal text processing mode.

M-TRAN provides much more flexibility than formal BNF because of
the ability to execute any function and even pass parameters using all of
the usual MINT tools during the parsing itself. For example, consider the
following:

item ::= ident idgen // number constgen //

OUTST(’syntax error’) .

The phrase definition for item is established as follows: ::= sets the phrase
entry. An attempt is made to match the input string against the ident defi-
nition. If the parse is successful the next function in the current alternative
is executed, i.e. idgen which could generate object text appropriate for an
identifier. If on the other hand the parse is unsuccessful the next alternative
is tried beginning at the //. In this case an attempt is made to match the
input string against the number definition. If successful, constgen is refer-
enced. Constgen may generate object text for a constant. Parsing would
then terminate in this alternative. If the second alternative also fails, the
last alternative is tried. This is a function reference to output an error
message.

The Syntax Analysis System 145

As another example, consider the text required for analysis and eval-
uation of a simple arithmetic expression. The syntax definition for the
expression is:

ADD= (-)<number> [(+<number>|—<number>)]

where () encloses optional symbols, | delimits alternatives, < > encloses
syntactically defined objects, and [] indicates that repetition is allowed.
Thus, a valid use of ADD is:

ADD=10+20+4 .
The text which implements the ADD mechanism is given below:

VAR NUM:0
FN clr:ENTRY, WHILE NE O START REPEAT, EXIT

PHRASE const
PHRASE moredgts: :=const//NUM,0 ->@NUM
const : :=BLANKS,DIGIT NO FAIL, NEXTCH-#0+NUMx*10
->Q@NUM, moredgts
PHRASE expr

PHRASE subexpr ::=’+’$$,+expr//’-’$$,-const,subexpr//’;CR’$$
expr : :=const, subexpr

PHRASE frstexpr::=’-’$$,-const,subexpr//const,subexpr

PHRASE statm ::=0,BLANKS, frstexpr//0UTST(’ Invalid

. syntax.’), OUTST(’ Last valid number: ’),
OPINT, clr, GO FAIL

PHRASE analyze ::=’=’$$,statm,0UTST(’Result: ’),0PINT, LOSE,
//0UTST(’> Try again.’)

PEND

DIR ADD:ENTRY,BLANKS,analyze,OPNL,REF.,EXIT

In this example, analysis and evaluation are initiated by a reference to
ADD. The directive ADD references the phrase analyze which first tests
for the presence of “=". If this symbol is present in the input stream the
phrase statm is referenced. If “=" is not present this alternative in analyze
fails and the second alternative is tried. This alternative simply generates
the output text “Try again.” and control returns to the ADD directive.
The phrase statm obtains a zero on the stack as an indicator and then
tests for a valid first expression following the “=”. The phrase frstexpr
allows either -number or number followed by a subexpression. The phrase
const both tests for a number and accumulates the value of the number on
the stack. The phrase subexpr tests for the form plus or minus followed by
an expression, or a C/R character. The expression form is tested in expr

146 Machine-Independent Organic Software Tools

which looks for a number followed by a subexpression. If the phrase subexpr
successfully matches the C/R character then control returns to frstexpr
with the accumulated arithmetic result on the stack. If expr, subexpr, or
const fail control returns through frstexpr to statm which tries the next
alternative. This results in the message “Invalid syntax...”. Since the failure
return will have caused subexpr not to have accumulated any results, the
item on the stack will be the last item successfully evaluated by const. This
number is written by statm to provide an indication of the point of failure.
The function clr resets the stack to before the zero item which was obtained
by statm. The failure exit is then taken from statm which causes analyze
to try the next alternative. This just writes the “ITry again.” message and
exits to ADD.

The close correspondence between phrases and BNF definitions should
be evident. The directive // corresponds to the vertical bar symbol in BNF.
Phrase names are not enclosed in < and > and basic symbol strings must
be enclosed in quotes and operated upon by the function $$.

11.3 Parsing Functions

The general use of parsing functions is the basis of the flexibility of the
phrase structure analyzer. For example, a string matching function ($$) is
provided and is used as follows:

par ::= $$(’abc’) // $$('def’) .

In this example an attempt is made to match the string abc. If that fails
an attempt is made to match def. If that fails the entire phrase fails. More
generally, $$ is allowed to operate on any string obtaining expression. Thus
in

$$(x EQ 1 CHOOSE (’pqr’,stringl))

an attempt is made to match the string returned by the expression in
parentheses, i.e. pqr or stringl depending on the value of x. In this way
(among others) the parsing can be made context sensitive.

All parsing functions are perfectly standard functions with the excep-
tion that they must drive the so-called failure mechanism on a non-match.
This may be illustrated by defining the phrase for digit. It would be ineffi-
cient to write:

The Syntax Analysis System 147

digit == 08§ // "1'$$ // 28§ .

The phrase is better implemented as a function:

FN digit:ENTRY
CHAR GE #0 AND CHAR LE #9
NO FAIL,
EXIT .

FAIL is the label of the M-TRAN failure mechanism; phrases implemented
as functions must transfer control to FAIL on failing to find a match condi-
tion. The failure mechanism automatically causes parsing control to return
from a rejected trial, (i.e. a function which jumped to FAIL; or a phrase
all of whose alternatives have failed) in order to pass control to the next
alternative of the referencing phrase.

11.4 Optional Elements

The directive OPTION may be placed at the end of a phrase definition. Its
meaning is that the alternative is optional, but does not cause matching
on its own. Thus, the definitions

pl == ’abc’$$ p2
p2 ::="def’$$ OPTION

allow the strings abc and abcedef but would disallow the string def on its
own.

11.5 Phrase Function Usage

The following Sections indicate a few of the ways in which phrase functions
may be used.

11.5.1 Phrase Functions

A phrase may return a value. For example one might design a phrase called
integer which would parse source text for the correct syntactic form of an
integer. But, in addition, this phrase could compute the value of the integer
while each digit was being parsed. The final computed value could be left

148 Machine-Independent Organic Software Tools
on the stack, to be used at will by the context that used the integer. A

more complex application might be for constant subscript evaluation in a
Fortran equivalence or data statement.

11.5.2 Phrase Parameters

Phrases are permitted to have parameters. For example, Fortran contains in
several contexts lists of syntactic entities separated by commas and enclosed
in parentheses. We could therefore define a phrase to express this, called
braklist, with one parameter (the syntactic entity), and use this phrase in

each context. Thus, references would be of the form:

braklist (@statnum)

for a list of statement numbers in a computed go to, and

braklist (@param)

for a parameter list context. The use of @ is necessary to pass the address
of the phrase parameter. Were it not used, these phrases would be activated
at the point of reference with unintended results.

11.6 Listing of M-TRAN

Below is the listing of the source text which implements M-TRAN.

BNF TOP-DOWN FAST-BACK ANALYSER

Q@Copyright D. F. Hendry.

ICL$. introduce internal identifiers

VAR PHREC: . current phrase record
VAR FAILX:O . current failure jump
VAR LINKP:0 . saved link pointer
VAR COL:0 saved CAP index

VAR PHLIST:0,&(@PHLIST ADIFF @PHREC). phrase record push-down list

VAR FEXITL:0 . compile time failure jump list

VAR PHLAG:0
FN SETPHR . phrase setting action

CLASS PHRASE:SHUNT,FNGEN,SETPHR . introduce phrase class

The Syntax Analysis System

RUN-TIME PARSING ALGORITHM

FN BOB:ENTRY
PUSHDREC (OPHREC , OPHLIST)
->@FAILX, ->@LINKP,
CURCOL ->@COL,
EXIT

LAB EDA:
SLKP (LINKP) ,
POPUPREC (@PHREC , @PHLIST)
EXIT

LAB FAILUP:
SLKP (LINKP) ,
POPUPREC (@PHREC , @PHLIST) ,
LINKP EQ O THEN <EXIT>
LAB FAIL:
COL ->QCURCOL,
GO VAL(DUP(FAILX-1) ->@FAILX),

FN $$:ENTRY
MATCH(,@CURCHS) THEN<EXIT>
GO FAIL,

PAGE
COMPILE TIME FUNCTIONS

FN FAILMECH:ENTRY
PUSHD (, @FEXITL)
COMPILE(’ ,GOEOA, *)
WHILE FEXITL NE O START
STORE1 (POPPEDUP (@FEXITL))
REPEAT
COMPILE(’>?)
0 ->QPHLAG
EXIT

DIR PEND:ENTRY
PHLAG EQ 1 THEN<
FAILMECH (QFAILUP)>
EXIT

SETPHR:ENTRY
SETPROG
CUR REF PEND ->QCUR,
1 ->Q@PHLAG
EXIT

MACRO ;:=:’ENTRYGLKPBOB(<)’

DIR //:ENTRY
COMPILE(’ ,GOEOA, ’)
PUSHD (PLOC, @FEXITL)
EXIT

DIR OPTION:ENTRY
PHLAG EQ 1 THEN<

. beginning of branch

. push down current phrase record
. fail exit 1list pointer and link
. current CAP index

. end of an alternate
. set link pointer
. pop-up higher level phrase record

. failed all alternates
. set link pointer
. pop-up higher level phrase record

. failed one alternate

. and input string status

. adjust fail pointer, try next alt
. string matching function

. successful match
. drive failure mechanism

. construct fail list + phrase end
. last jump addr to list

. end of alternate jump

. empty list at bottom of phrase

. close forward ref (list addr)

. terminate phrase

. last failure jump

. phrase setting action

. set PROG state

. phrase entry code
. next alternate

. successful jump
. location of new alternate

. creates phrase as optional

149

150 Machine-Independent Organic Software Tools

FAILMECH (GEDA) > . last failure jump successful
EXIT
RCL$. disallow internal identifiers}

12. MINT Techniques and Examples

12.1 Introduction

This Chapter contains an introduction to standard techniques for writing
and analyzing MINT text, and some examples of MINT text. The examples
are arranged in order of increasing complexity.

12.2 Entering Text

There are several ways in which text may be entered into a MINT system.
Generally, if the text is to be retained it should be placed in a file and then
referenced using the SI directive (Section 10.5.1). The means of entering
the text into a file, and of editing files, will depend on the facilities of the
system in which MINT is implemented. If the system does not have its own
text editing system, the editor given later in this Chapter (Section 12.6)
may be used. The advantage of entering the text into a file is that, in most
implementations, the current state of the MINT system is lost if the VM
must be restarted. In addition, when new text is being written it will often
be the case that the text will be revised several times before the intended
results are obtained.

12.3 Translation and Manipulation of Text

Once text has been entered into a file, it may be provided as input to the
system by means of the SI directive. Any text at all may be included in a file
which is referenced by SI. Thus, the text may be composed of such things as
variable declarations, function definitions, macros, directive references, or
NOW ... !sequences. Of course, any such sequences may be typed directly
into the system with exactly the same effects. A standard way of writing
text to accomplish some new result is to enter the text in a file, call the VM
and load the compiler, reference the file by means of SI, establish any initial
conditions or initialize diagnostic aids such as tracing or trapping, and then

152 Machine-Independent Organic Software Tools

reference the appropriate directives or functions in the text. If the intended
results are not obtained, individual procedures may be replaced or variables
changed. Such changes should be done with care so that any changes which
are intended to be permanent can be remembered and applied to the copy
of the text which is retained in a file. When a significant amount of text
is working as intended, the copy of VSTORE with this text included may
be written out to a file using the CDUMP (Section 6.6.5) primitive. This
VSTORE copy may then be reloaded subsequently so that facilities may
be developed incrementally. The CDUMP operator may also be used to
preserve the current state of VSTORE so that work may be resumed at
that point at a later time.

12.4 Analysis and Diagnostic Techniques

The purpose of this Section is to provide general guidance about the use of
MINT analysis and diagnostic mechanisms. The general intention of these
mechanisms is to make it possible to cause the state and operation of the
MINT system to be entirely visible. By this we mean that it is possible
to record or display any information in VSTORE or any operation of the
Virtual Machine. Thus, if any state or behavior is not understood it can
be displayed for detailed analysis. This potential visibility is essential for
predictable and efficient problem analysis.

Generally, we emphasize analysis rather than diagnosis as a working
method. If MINT text is produced by careful writing and analysis of each
elementary component then correct operation is to be expected and there
will only be exceptional need for subsequent diagnosis.

We tend to be opposed to “iterative refinement” as a means of writing
well-constructed text. If the current attempt does not perform correctly it
is generally advisable to rethink the entire task and make a new start. The
compactness of MINT text tends to enhance the efficiency of this approach.

12.4.1 Analysis of Data Structures

Frequently the most important aspect of analysis is the understanding of
the transformation of the data structures. The most direct means of under-
standing these transformations is to write procedures which display each
structure, or relevant portions of the structure. These procedures will nat-
urally be written as the data structures are being defined. If lists of items
or records are used, procedures which selectively display the list items will
likely be needed. If the task that is being written uses data that are being

MINT Programming Examples 153

received from a user or directly from a communications line, it is appro-
priate to write procedures which will simulate the data input environment.
This simulated environment will permit controlled experiments as the text
is written. This is particularly important for text which is to be used for
“realtime” control of equipment or processes.

If functions are used to access the items in a record (as discussed in
Section 7.2.5) then it is a simple matter to place “intercept” references in
the accessing functions so that the sequence of operations on any item in
a record is easily followed. This intercept notion can easily be generalized
to operate on any reference since a variable name may be changed to a
function which obtains or stores the value, but which also provides display
information. For example, the variable varl could be replaced by:

VAR xvarl:0

VAR pvarl:@xvarl

FN @varl: ENTRY, OPINT(VAL(DUP(pvarl))),
OPNL, EXIT

FN varl : ENTRY, VAL(@varl), EXIT

Then, a reference to varl would obtain the value of xvarl after displaying its
value, and a reference to @Qvarl would obtain the address of xvarl. Again,
the value of xvarl would first be displayed. After these changes any text
which referenced varl as a variable would yield the expected results but in
addition would produce any additional actions which were written into the
functions.

In simple cases where it is only necessary to inspect sequential locations
in data-space the following procedure could be used:

FN ovec:ENTRY,0 ->@TEMP, WHILE DUP(-1) GE 0

START

<=>, DUP, OPINT(VAL(FROM TEMP))

ADV (QTEMP) , LOSE(TEMP/10), DREM EQ O
THEN<OPNL>, <=>,

REPEAT, LOSE(TEMP/10), DREM NE 0
THEN<OPNL>,

LOSE, LOSE, EXIT

The function ovec expects the address of the vector and its length as argu-
ments. Thus, execution of

ovec(@v1,20)

would display the 20 words starting at @Qv1.

154 Machine-Independent Organic Software Tools
12.4.2 Analysis of Generated Object Code

It is frequently of interest to see what actual Virtual Machine instructions
have been generated or are executed in a specific context. The simplest
means of displaying generated instruction sequences is the D$ directive as
described in Section 8.6.1. It may happen that the compiler has generated
unexpected sequences due to shunt or precedence effects. D$ will reveal
such effects. If it is the execution behavior of a sequence that is of interest,
T$ may be used to cause display of each Virtual Machine instruction and
current operand stack values as the instructions are executed. The T$ di-
rective is described in Section 8.6.2. Since individual operation codes may
be traced, compact but informative tracing is possible. The TRAP opera-
tor may also be used for other analysis purposes as shown in the example
in Section 12.7.

In case it is necessary to determine the names, and addresses where
set, of some identifiers, the LV$ directive may be used. This directive, as ex-
plained in Section 8.6.3, provides information about the current dictionary
entries.

12.4.3 Instruction Emulation

If it is necessary to perform analysis based on single instructions the most
selective and efficient technique is to use the EMULATE operator. The
EMULATE operator allows the replacement of a single Virtual Machine
instruction by a normal procedure written in MINT. Previously undefined
operation codes may also be defined by means of EMULATE. There are
two obvious uses of EMULATE. The first is to investigate behavior of ex-
ecutions as a function of individual instructions. For example, a store into
a particular VSTORE location could be occurring unexpectedly. Replace-
ment of the store operator with emulation text which checks for the specific
address will detect the source of the event immediately. Second, the use of
possible new primitives may be investigated more easily by first writing
them as MINT procedures prior to incorporating them into the Virtual
Machine. The use of EMULATE is fully described in Section 6.6.2.

12.5 A Simple Calculator

This example shows how a basic desk calculator may be written. The pro-
cedures which are used are written as directives so that they will execute
immediately when referenced.

MINT Programming Examples 155

12.5.1 The EVAL Directive

This directive will evaluate any valid MINT expression and display the
resulting value. The directive is:

DIR EVAL: ENTRY,
IPAR,
OPINT(), OPNL, EXIT .

The directive operates as follows: IPAR (See Section 8.2) reads the next
expression from the current input source, evaluates it and leaves the result
on the operand stack. OPINT converts and outputs this result. OPNL
outputs a carriage-return, thus completing the current output image. An
example usage is:

EVAL (2+42)
with the resulting display:

00004 .

Another usage is:

VAR X1:25
VAR X2:30

VAR X3: MINUS 12

EVAL ((X1+X2+X3)/6+15)

which will yield the display:

00022 .

12.5.2 An Addition Directive

This directive provides a simple routine which will sum a column of num-
bers. Whenever a non-numeric character is input the routine will print the
current total and terminate. The text for the directive is:

DIR ADD: ENTRY,
0, WHILE READ, BLANKS, DIGIT START
+ININT,
REPEAT
OUTST(’ Total:) OPINT)()
OPNL, REF . , EXIT .

The directive will carry out the following operations: First it initializes the

156 Machine-Independent Organic Software Tools

accumulation by obtaining a zero on the stack. Then it starts a loop which
reads the next image (READ), removes any leading blanks (BLANKS), and
tests for the presence of a digit (DIGIT). If a digit is present it converts the
input to an integer (ININT) and adds it to the current top-of-stack (+).
If a digit was not found the REPEAT loop terminates. At this point the
message which gives the current total is displayed. Then a reference to the
period directive is made so that any remaining text in the current input
line is discarded, and the procedure terminates. Thus,

ADD
10
20
45
9
T

will result in the display:

Total: 00084 .

A slightly more elaborate version of this directive is shown below. This
version carries out the accumulation as before, but will also display sub-
totals as the main total is being accumulated. A sub-total is requested by
typing S. The final total is requested by typing T. Any other non-numeric
input is ignored. The procedure is as follows:

DIR ADD: ENTRY,

0, WHILE READ, BLANKS, CHAR NE #T START
DIGIT THEN <+ININT ELSE
CHAR EQ #S THEN <OUTST(’ Sub-total: *)
OPINT(DUP),0OPNL> >
REPEAT,
OUTST(’ Total:) OPINT()
OPNL, REF . , EXIT

Most of this directive should be clear from inspection. However, notice
that the value of the sub-total is displayed by means of the expression
OPINT(DUP). The reference to DUP obtains an extra copy of the current
top of stack so that the current total is still on the top of stack after the
OPINT has removed the top object and displayed it as an integer.

12.6 Text Editing Directives

This example shows a fairly simple use of MINT for text manipulation,

MINT Programming Examples 157

and provides a useful facility if MINT is used in a system which does not
itself provide an effective text editing mechanism. It will be seen in this
example that the use of the IPAR mechanism allows the recognition and
evaluation of expressions without special effort. In addition, the use of
the string matching primitives makes the editing directives which require
matching of strings or substrings particularly simple to write.

Since these editing directives form an extension of the MINT system,
all general MINT facilities are also available during editing. For instance,
directives, functions, or macros may be written at any time to simplify a
specific editing task. The basic procedures given below provide building
blocks for creation of a wide range of editing structures. The object text
uses 1197 words of VSTORE for instructions and 262 words for data.

The following is the complete file of the editing system in the exact
form which is used as input to the compiler. The detailed documentation
is kept in the file so that the editing system is entirely self-contained.

12.6.1 Listing of MINT Editor Source Text

. MINT TEXT EDITING FACILITIES
. @Copyright 1980 M.D. Godfrey, H. Hermans

. The directives below provide a basic text editing

. mechanism within MINT. In order to initiate editing, a

. reference to the directive EDIT is required. EDIT expects
. a string parameter which is the name of the input file.

. Editing is terminated by a reference to the END directive.
. END also expects a string parameter which is the name of

. the file into which the edited output will be written.

. Thus, editing is initiated by: EDIT infile
. and terminated by: END outfile

If END is used without a parameter, editing is
. terminated without writing any output.

. The editing process operates on sequential line-structured
. files. Lines may be inserted or replaced, or substrings

. within a line may be replaced by a new substring. The

. editor may be requested to go to a specified line in the

. file, or may be requested to search each line until it

. reaches a line which contains a specified string.

. A pointer, the current line number, is maintained by the
. editor. When editing starts the pointer is at zero, which
is before the first line. In this case, and in the case
. where the line at the current position has been deleted,

158 Machine-Independent Organic Software Tools

there is no current line image. In this case, the editor
. may be considered to be between lines.

The editor treats files as forward sequential. It reads
the input file in a forward direction, copying the lines
and any changes into a scratch file. When the end-of-file
is reached on input, or when a request is made which
causes positioning to a line above the current position,
the current forward copy is completed, the files are
closed and the scratch file is used as input. At this
point a second scratch file is used for output. At the
next end-of-file condition, the files are closed and the
two scratch files are exchanged so that the previous
output becomes the input. Finally, the END statement
causes current copying to be completed and the output
scratch file to be copied to the specified user file.

The editor has two "modes". 1In "input" mode, which is
initiated by the / directive and terminated by a blank line,
the editor simply reads the text typed and stores it in the
file at the current file position. In "edit" mode the
directives described below are available:

1. Positioning Directives.

G expr
G +expr
G -expr

This directive causes positioning to a line number in the
file. If the first form is used (G expr) the line number
is the result of the evaluation of ’expr’. If the second
form is used the line number is the current line number
added to the result of the evaluation of expr. If the
third form is used the line number is the current line
number minus the value of expr.

Here, and in all other directives, ’expr’ is any
expression which may be evaluated by means of the IPAR
. mechanism.

N expr

This is equivalent to G +expr. N with no parameter is
treated as N 1.

2. String Search Directives.

F string
F,expr string

This directive searches through the lines in the file
until it finds a line which contains the text which was
supplied as the string parameter. The matching of the
supplied string and each line is done by treating the line
as one string and the parameter, starting after the blank
following the directive, as the other string. Thus,

MINT Programming Examples

F X

. would match a line which contains 4 blanks followed by an

. X in column 5. If it is desired that the match start in

some column other than column 1 of each line image, the
form F,expr should be used. Expr is an expression which
. yields a value which is taken as the starting column for

. the match. Thus,

F,10 xx

. would match on the first image which contained xx starting
in column 10.

L string
L,expr string

. This directive searches through the lines in the file

. until it finds a line which contains a match on the

supplied string anywhere within the line. Thus, unlike the
. F directive, the match attempt is applied using the entire
line, then the substring starting in column 2, then column
3, etc. Thus,

L cat

. would locate the next line which contains the substring
cat anywhere in the line. If it is desired that the match
should start in a column other than column 1, the form
. L,expr should be used. In this case the matching in each
line will start at column expr and continue to the end of

. the image.

3. Line Insert Directives.

I string
I,expr string

. This directive inserts the text string following the

current line. If the first form is used the text is copied
from the position following the blank after I to start in
column one of the created line image. Thus, above, string
. would start in column one of the new image. If the second
. form is used, the copy is to the column given by expr.

. Thus,

I,14 text input

. would create a new image composed of the text, text input

. which would start in column 14.

IB string
IB,expr string

. This directive inserts the text string before the current
line.

159

160 Machine-Independent Organic Software Tools

R string
R,expr string

. This directive inserts the text string in place of the
current line.

. 4. Line Delete Directive.

D expr
D exprl expr2

. This directive deletes lines. If no parameters are used,
it deletes the current line. If one parameter is used it

. deletes expr lines starting with, and including, the
current line. If two parameters are given, it skips expril
lines and then deletes expr2 lines.

5. Text Change Directive.

C /stringl/string2/
C,expr /stringl/string2/

. This directive acts on the current line. It searches for
. the string stringl. If this string is found it replaces
. the found string by string2. The preceding and following
. parts of the line are left unchanged. If C,expr is used
. the search for stringl starts in column expr.

6. Line Display Directive.

P expr
P exprl expr2

. This directive displays the lines given by the parameters.
. The parameters have the same meaning as with the D
. directive.

7. Miscellaneous.
LN

. This directive displays the line number of the current
line.

RV

. This directive causes the current input and output files

. to be closed, and the input file to be reopened for input.
. This has the effect of discarding any changes made during
. the current pass through the file.

V ON/OFF
. This directive controls ’verify’ mode. If verify mode is

. on the directives L, F, C, and N cause the current line to
. be displayed before they exit. If verify mode is off this

MINT Programming Examples

. display is not done.

. This directive controls the printing of the current line
. number preceding the printing of each line image. If LNUM
is on, the line number is displayed in columns 1 through

. 6. Column 7 will contain :. If LNUM is off the image is

LNUM ON/OFF

. displayed without any line number.

Introduction of all editing directives.

DIR
VAR
DIR
DIR
DIR
DIR
DIR
DIR
DIR
DIR
DIR
DIR
DIR
DIR
DIR
DIR
DIR
DIR

EDIT . entry into editing mode.

EDDIR:0 . list of EDIT identifiers.
BLOCK

END . terminate editing.

C . change.

D . delete lines.

F . find.

G . go to line.

I . insert.

IB . insert before.

L . locate text.

LN . print current position.

LNUM . set or reset line numbering mode.

N . move to next line.

P . print text.

R . replace a line.

RV . revert current changes.

\ . set or reset verify mode.

/ . for input mode.

. Variables for use with V and LNUM.

VAR
VAR
VAR

ON:1
OFF:0
ALL:9999,

ICON EOFF 256,
ICON MSI$ 1, ICON MS0$ 2,

VAR CIFT:MSI$, VAR COFT:MS0$,
BLOCK . Restrict further introductions to within
. editing.
VAR DATE EQV 12 . define location of current date.
ICON CRC 13 . define C/R character value.
VAR LNP:0 . 1-> print line numbers.
VAR VERI:1 . verify mode flag.
VAR COF:0 . output file index.
VAR CIF:0 . input file index.
VAR LNO:0O . current line number.
VAR CHGS:0 . 0-> no changes this pass.
VAR STCOL:1 . start column for I, IB, F, L, C.
VAR SKNT:O, . lines to skip.
VAR NAM1:’EDIT_A.TMP’, VAR NAM2:’EDIT_B.TMP’,

VAR

OUTF:@NAM1, VAR INF:@NAM2,

set file pointers.

161

162 Machine-Independent Organic Software Tools

VAR OUTFN:0 . pointer to output file.

VAR BCAP:<

VAR BCNO: 0, >

VAR BFR: RESERVE 68,

VAR LSTR:<>, VAR LBFR:0, RESERVE 39,

common subroutines.

. function to set changed indicator.
FN CHG:ENTRY 1->Q@CHGS, EXIT

check for non-terminal char.
FN EOSTR: ENTRY CHAR NE 13 EXIT

. process any modifier field.
FN MODFS: ENTRY, CHAR, ADVCH, EQ #, THEN <IPAR, ADVCH ELSE 1>
->@STCOL, EXIT

FN CKIOPN: ENTRY,
CIF EQ O THEN <CLOSEF(COF),0UTF,INF,->@0UTF,->QINF,
OPENF (CIFT, INF) ->@CIF, OPENF (COFT, OUTF) ->QCOF,
DUP (0) ->@LNO, ->@CHGS , >
EXIT

. output current image to file.

FN OUTCIM: ENTRY, CKIOPN,
BFR NE O THEN<SOUNIT, COF->@SOUNIT,
OUTST (BCAP) ,->@SOUNIT,>
EXIT

. move next input image to current image.
FN MOVENI: ENTRY
0->@BCNO,
STCOL, WHILE DUP GT 1 START
PUTCH(@BCAP,#) ,ADV(@BCNO) ,-1,
REPEAT, LOSE,
CURCOL, WHILE DUP NE VAL(CURCHS) START
DUP ->@CURCOL, PUTCH(@BCAP,GETCH(@CURCHS)),
ADV (@BCNO) ,
ADVCH,+1, REPEAT, LOSE,
BCNO EQ O THEN<PUTCH(@BCAP,CRC) ,ADV(@BCNO)>
BCNO->BCAP, ADV(@LNO),
EXIT

store next input image in file.
FN STORNI: ENTRY, CKIOPN,

STCOL, WHILE DUP GT 1 START
OPCH(COF,#),-1,

REPEAT, LOSE

GETCH(@CURCHS) EQ O THEN<OPCH(COF,CRC)>

WHILE COF, DUP(GETCH(@CURCHS)) NE O START
OPCH, ADVCH, REPEAT,

LOSE, LOSE, ADV(@LNO),

EXIT

. read next image from file.

MINT Programming Examples 163

FN RDNIM: ENTRY, CKIOPN,
GETSTR(CIF,68,BCAP),
BFR NE O THEN <0->@BCNO,ADV(QLNO),EXIT >
OPNL, OUTST(’End-of-file at line:’),0PINT(LNO),OPNL,
CLOSEF (CIF),LOSE, DUP(0)->@CIF,DUP->QLNO,
EXIT

. output current image and read next.
FN OUTRDN: ENTRY, OUTCIM, RDNIM(1), STCOL-1->@BCNO, EXIT

. print current image.
FN PRINT: ENTRY
BFR NE O THEN<
LNP NE O THEN<OPINT(LNO),O0UTST(’:’)>
OUTST(BCAP) >
EXIT

. edit <input filename>.

REF EDIT:ENTRY
OUTST(’MINT Text Editor 1.5. Date: ’),
OUTST(@DATE), OPNL,
OPENF (MSI$, FNAME)->@CIF, OPENF(COFT, OUTF)->@COF,
DUP (0)->@LNO,->BCAP, CHG, SETBLOCK(@EDDIR),
EXIT

. end <element name>
REF END: ENTRY,
BLANKS, CHAR EQ 13 THEN <CLOSEF(COF), CLOSEF(CIF),
OUTST(’End of EDIT - no text filed.’), OPNL, EXIT>
OUTCIM, SOUNIT, DUP(0)->@LNO, CIF,
CLOSEF (COF) ,0PENF (CIFT,QUTF),
FNAME, ->@0UTFN,MS0$,DUP->@COFT, OPENF (,0UTFN) ->@S0UNIT,
WHILE DUP NE O START
WHILE DUP(INCH(DUP)) NE EOFF START
DUP EQ 13 THEN <ADV(QLNO)>
OPCH(<=>S0OUNIT) ,REPEAT,LOSE,
CLOSEF(), REPEAT,
CLOSEF (SOUNIT), LOSE, ->@SOUNIT,
OUTST(’End of EDIT - ’),0PINT(LNO),
OUTST(’ lines filed in: ’), OUTST(OUTFN),
MSI$->@CIFT,MS0$->@COFT,
OPNL, REF ENDBLOCK, EXIT

. / enter input mode.

REF /: ENTRY, MODFS,
OUTST(’Input mode at line ’),0PINT(LNO),OPNL,
WHILE EOSTR START OUTCIM, MOVENI, REPEAT
OUTST(’Edit mode at line ’),0PINT(LNO),OPNL,
CHG, EXIT

. LNUM directive.
REF LNUM: ENTRY, IPAR->QLNP, EXIT

. V directive.
REF V: ENTRY, IPAR->Q@VERI, EXIT

. LN directive.

164 Machine-Independent Organic Software Tools

REF LN: ENTRY, OPINT(LNO),OPNL,EXIT

. RV directive.
REF RV: ENTRY, 0->QCHGS, EXIT

insert new image.
REF I: ENTRY
MODFS,0UTCIM, MOVENI,CHG, EXIT

insert new image before current image.
REF IB: ENTRY
MODFS, STORNI, CHG, EXIT

. replace current image.

REF R: ENTRY
MODFS,
BFR NE 0 THEN <LNO-1->@LNO>
MOVENI, CHG,
EXIT

common argument function for print, next, and delete.
FN DPOPT: ENTRY

0->@SKNT,
NOT EOSTR THEN <1, EXIT ELSE

IPAR,

EOSTR THEN <DUP->@SKNT,+IPAR>>
EXIT

. print lines.
REF P: ENTRY
DPOPT, WHILE DUP(-1) GT O START
SKNT GT O THEN <SKNT-1->@SKNT, ELSE PRINT>
OUTCIM, RDNIM, REPEAT,
LOSE, PRINT, EXIT

. delete lines.
REF D: ENTRY
DPOPT, WHILE DUP(-1) GT O START
SKNT GT O THEN <SKNT-1->Q@SKNT,0QUTCIM,
ELSE LNO-1->QLNO, >
RDNIM, REPEAT, LOSE,
0->BCAP, CHG, EXIT

. go to next line.
REF N: ENTRY
DPOPT, WHILE DUP(-1) GE O START
OUTCIM, RDNIM(1) EQ O THEN<LOSE, EXIT>
REPEAT,
LOSE,
VERI NE O THEN <PRINT>
EXIT

. go to line #.
REF G: ENTRY
BLANKS, CHAR EQ 13 THEN <0, ELSE CHAR EQ #+ THEN <
NEXTCH, LNO+IPAR ELSE CHAR EQ #- THEN <
NEXTCH,LNO-IPAR, ELSE IPAR >>>

MINT Programming Examples 165

DUP LT LNO THEN <
CHGS EQ O THEN <CLOSEF(COF), CLOSEF(CIF),
OPENF (COFT, OUTF) ->@COF,
OPENF (CIFT, INF) ->@CIF, DUP(0)->BCAP,->@LNO,
ELSE OUTCIM,CIF NE 0
THEN <WHILE DUP(INCH(CIF)) NE EOFF START
OPCH (<=>COF) ,REPEAT, LOSE,
CLOSEF (CIF) ,DUP (0)->@CIF ,DUP->@LNO, DUP->@BFR, ->QCHGS> >>
WHILE DUP NE LNO START
OUTCIM, RDNIM(1) EQ O THEN < LOSE, EXIT > REPEAT
LOSE,
VERI NE O THEN <PRINT>
EXIT

common function for F and L.
FN BLDSTR: ENTRY
MODFS,
LBFR NE O THEN<CURCOL, BLANKS, EOSTR THEN<->Q@CURCOL,
ELSE LOSE, EXIT >>
INSTRING(LSTR,@LSTR,@EOQSTR)->@LSTR,
EXIT

. find directive.
REF F: ENTRY
BLDSTR,
OUTRDN EQ O THEN<EXIT>
WHILE MATCH(LSTR,@BCAP) EQ O START
OUTRDN EQ O THEN<EXIT>
REPEAT
VERI NE O THEN<PRINT>
EXIT

. locate directive.
REF L: ENTRY
BLDSTR,
OUTRDN EQ O THEN <EXIT>
WHILE MATCH(LSTR,@BCAP) EQ O START
LBFR LE (BFR-BCNO) THEN<ADV(@BCNO),
ELSE OUTRDN EQ O THEN<EXIT>>
REPEAT
VERI NE O THEN <PRINT>
EXIT

. data and functions for the change directive.

VAR DELCHR:0 . delimiter char.
VAR LSTRA:<>, VAR LBFRA:0, RESERVE 39,
VAR BCAPA:<

VAR BCNOA:0,>
VAR BFRA: RESERVE 68,

. function to read in first substring for change.

FN BLDSSTR:ENTRY,
LSTRA, INSTRING(GLSTRA, [CHAR NE DELCHR])->@LSTRA,
EXIT

. function to try to match substring for change.
FN LMATCH: ENTRY,

166 Machine-Independent Organic Software Tools

WHILE MATCH(LSTRA,@BCAP) EQ O START
LBFRA GT (BFR-BCNO) THEN <0,EXIT>
ADV (@BCNO) , REPEAT,

BCNO-LBFRA->@BCNQ, 1,

EXIT

. ¢ - change directive.
REF C: ENTRY,
MODFS,
STCOL-1->@BCNO,
CHAR->@DELCHR, ADVCH,
BLDSSTR, LMATCH, ADVCH,
0,DUP->@BCNOA, ->BCAPA,
THEN <BCNO+LBFRA+1 LT BFR THEN
<BCNO, DUP+LBFRA->@BCNO,
@BCAPA,
WHILE DUP, GETCH(@BCAP), DUP NE 13 START
PUTCH(, ,), ADV(@BCNO),
ADV(@BCNOA), REPEAT
BCNOA->BCAPA,
LOSE,LOSE,LOSE, ->@BCNO>
@BCAP,
WHILE CHAR NE DELCHR START
DUP, CHAR, PUTCH(,,),
ADV(@BCNO), ADVCH,
REPEAT,
0->@BCNOA,
WHILE DUP, GETCH(@BCAPA),DUP NE O START
PUTCH(, ,), ADV(@BCNO),
ADV (@BCNOA) ,
REPEAT,
LOSE, LOSE, LOSE,
BCNO+1->@BFR, PUTCH(@BCAP,13), CHG,
VERI NE O THEN <PRINT>
ELSE
OUTST(’> No match. ’), OPNL,
WHILE CHAR NE DELCHR START ADVCH REPEAT>
ADVCH,
EXIT
ENDBLOCK
DIR SVBLK:ENTRY, SAVBLOCK(@EDDIR), EXIT .
SVBLK .

12.7 Instruction Execution Analysis

This example provides a general tool for the analysis of any MINT text
execution. The instruction analysis routines use the TRAP operator to
gain control at the start of execution of each MINT instruction. Thus, it
is possible to tabulate the usage of each instruction and function reference
within the text which is under analysis. The Section below lists the required
source text. This text includes commentary to explain the use of the trace
functions. After this listing, an example use is shown.

MINT Programming Examples 167

12.7.1 Listing of Instruction Trace Functions

Trace module to obtain VM instruction mix

Call: TRMIX (<start>)
<start> is address of ENTRY for path to be traced until EXIT.
Report is printed at EXIT.

Call: TREND
Will terminate TRMIX tracing.

FN TRMIX . Take mix over function path
FN TREND . End TRMIX

LAB
LAB
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR

FN

UNLOCK INTDIC
BLOCK

TRMFCNA

TRMFCNB

TRMFR:0

CNTRS: RESERVE 80

STRT :0, VAR ENDLCN:O,

SCR :0, VAR TOTAL :0, VAR SUM :0,

IGFLG:0, VAR KLIST :0, VAR SCR2:0,

FCNBUF:0,6,VAR FCNCHN:0, VAR FCNLIST:0, VAR CURFCN:0,

0PO:’I11°, VAR OP1:°GET’, VAR OP2:’GETV’,VAR OP3:°VAL’, VAR OP4:’->’,

0P5:°DUP’, VAR OP6:’LOSE’,VAR OP7:’GLKP’,VAR OP8:’SLKP’,VAR 0P9:’+’,

0P10:’->, VAR OP11:’%’, VAR OP12:’/’, VAR OP13:’NEG’,

0P14:’FROM’ ,VAR OP15:’°MASK’,VAR OP16:’UNION’,VAR OP17:’DIFFER’,

0P18:’COMPL’,VAR OP19:’EQ’,VAR OP20:’NE’,VAR 0P21:’LT’,VAR OP22:°GT’,

0P23:’°LE’, VAR 0P24:’°GE’,VAR OP25:°NOT’,VAR OP26:’AND’,VAR OP27:°0R’,

0P28:’XO0R’,VAR 0P29:’CHOOSE’,VAR OP30:’YES’,VAR OP31:’NO’,

0P32:°G0’,VAR OP33:°D0’, VAR OP34:’ENTRY’,VAR OP35: EXIT’,

0P36:’GETCH’ , VAR OP37:’PUTCH’ ,VAR OP38:’INCH’,VAR OP39:’QPCH’,

0P40: ’MATCH’ ,VAR OP41:’DICMATCH’ ,VAR OP42:’STOP’,VAR OP43:’PDUMP’,

0P44:’TIME’ ,VAR OP45:°0PENF’,VAR OP47:’CLOSEF’,VAR OP48: EXR’,

0P49:°TRAP’ ,VAR OP50:°<=>’, VAR OP51:’TRUE’,VAR OP52: ’FALSE’,

0P53:’ADV’,VAR 0P54:’°ESTOP’,VAR OP55:’ADIFF’,VAR OP56:°-->’,

0P57:°<--’,VAR OP58:’>VMDEBUG’,VAR OP80:’EMULATE’,

OPTBL:0,0P1,0P2,0P3,0P4,0P5,0P6,0P7,0P8,0P9,0P10,0P11,0P12,0P13,0P14,
0P15,0P16,0P17,0P18,0P19,0P20,0P21,0P22,0P23,0P24,0P25, 0P26 , 0P27,
0P28,0P29,0P30,0P31,0P32,0P33,0P34,0P35,0P36,0P37 ,0P38,0P39,0P40,
0P41,0P42,0P43,0P44,0P45,0,0PA7 ,0P48,0P49,0P50,0P51,0P52,0P53,0P54,
0P55,0P56,0P57,0P58,0P80,

TRMFNR: ENTRY, GO TRMFR, EXIT

Space

FN SPC: ENTRY, WHILE DUP NE O START 0B, -1, REPEAT LOSE EXIT

Calculate and print percent value

FN CALCY%: ENTRY, ->@SUM,

SETOPP (#0,2) 0B DUP(*100) OPINT(DUP(/SUM)) OPCH(SOUNIT,#.)
OPINTD((*SUM,-)*100/SUM) SETOPP(# ,5)

168

Machine-Independent Organic Software Tools

EXIT

Activate trace

FN MIXCOM: ENTRY,

0, WHILE DUP NE 79 START DUP, 0->(<=>, FROM @CNTRS), +1, REPEAT LOSE
OUTST(’Instruction mix trace activated.’) OPNL TRAP(Q@TRMFNR),
EXIT

Trace function common for detailed analysis

LAB FCNCOM:

WHILE IGFLG NE O THEN <DUP EQ VAL(1 FROM IGFLG), FALSE TRAP
POPUP (@IGFLG) ,GO BACK>
ADV(@TOTAL) ,
VAL(DUP) GE 80 THEN <@KLIST
WHILE DUP(VAL) NE O START, ->@SCR, VAL(DUP) EQ VAL(1 FROM SCR)
THEN <PUSHD(DUP+1, @IGFLG), VAL(2 FROM SCR),
ELSE SCR, REPEAT>
ELSE VAL (DUP)>
FROM @CNTRS->@SCR,
VAL (SCR)+1->SCR,

VAL(DUP) EQ QENTRY THEN<Q@FCNCHN,
WHILE DUP(VAL) NE O, LAB z , NO z , —>@SCR,
DUP NE VAL(1 FROM SCR) THEN<
SCR, GO BACK, z:, FORGET z, NEXTFREE(@FCNBUF)->@SCR,
JOIN(SCR, QFCNCHN),
DUP->2 FROM SCR,DUP->3 FROM SCR,->4 FROM SCR,
DUP->1 FROM SCR>
VAL(4 FROM SCR)+1->4 FROM SCR, GLKP->5 FROM SCR,
PUSHD (CURFCN, @FCNLIST), SCR->QCURFCN>

LAB COMA: CURFCN NE O THEN <GLKP EQ VAL(5 FROM CURFCN)

THEN <VAL(2 FROM CURFCN)+1->2 FROM CURFCN, TRAP>
POPPEDUP (@FCNLIST)->@CURFCN, GO COMA>
TRAP,

Print Mix report

FN REPORT: ENTRY OPNL

TOTAL EQ O THEN<OUTST(’No instructions traced.’), OPNL, EXIT>
OUTST(’ Instructions traced: ’) OPINT(TOTAL) OPNL OPNL
QUTST(’ Op. Code Count % ’) OPNL
OUTST(? FCN"s ’) SETOPP(# , 4) OPINT(DUP(CNTRS))
CALCY%(TOTAL) OPNL, 1,
WHILE DUP NE 80 START
DUP FROM @CNTRS->@SCR,
VAL(SCR) NE O THEN<SETOPP(# , 5), OPINT(DUP), SPC(4),
VAL(DUP FROM @OPTBL) NE O THEN<OUTST(VAL(DUP FROM @OPTBL)),
VAL (VAL(DUP FROM @OPTBL)), WHILE DUP NE 8 START
0B, +1, REPEAT, LOSE>, SETOPP(# , 4),
OPINT(DUP(VAL(SCR))), CALC%(TOTAL), OPNL>
+1,
REPEAT, LOSE,
DUP(0) ->@TOTAL, WHILE DUP NE 79 START
DUP, 0->(<=>, FROM @CNTRS), +1,
REPEAT, LOSE,

MINT Programming Examples 169

EXIT
Detailed fcn report

FN REPORTF: ENTRY,
WHILE FCNLIST NE O START POPUP(@FCNLIST) REPEAT
FCNCHN EQ O THEN <EXIT>
OPNL OUTST(’Functions called:’) OPNL OPNL
OUTST(’Address Entry Number Count % ’) OPNL,
CUR
WHILE FCNCHN NE O START
JOIN(DETACHED (@FCNCHN) , Q@FCNBUF),
OPINT(DUP(VAL(1 FROM FCNBUF))), 0B, LOOKD,
SETOPP(# , 6), OPINT(VAL(4 FROM FCNBUF)),
SETOPP(# , 6), OPINT(DUP(VAL(2 FROM FCNBUF))), CALC/(TOTAL),
OPNL,
REPEAT, ->@CUR, 0O->@CURFCN,
EXIT
PAGE
Initiate Tracing

TRMIX: ENTRY, ->@STRT, Q@TRMFCNA->QTRMFR, MIXCOM, EXIT
Discontinue tracing
TREND: ENTRY, TRAP(0), REPORT, EXIT

TRMFCNA: DUP EQ STRT
THEN <GLKP->QENDLCN, QTRMFCNB->QTRMFR, GO FCNCOM>
TRAP,

TRMFCNB: VAL(DUP) EQ @EXIT AND GLKP EQ ENDLCN THEN<
OUTST(’ Instruction mix for path from ’), OPINT(STRT),
OUTST(’ to ’), OPINT(DUP),
TOTAL, REPORT, ->QTOTAL, REPORTF, O->@TOTAL,
QTRMFCNA->@TRMFR, TRAP>
GO FCNCOM,

ENDBLOCK
RCL$
PAGE

12.7.2 Example of TRMIX Use

The following is an example use of the instruction analysis routine. The
routine which is analyzed is the insert directive from the edit routines.

MINT-3 Virtual Machine (32-bit Virtual Memory): Version 1.1
VSTORE size 16777K words. Start PDUMP load......:

MINT-3 System: Version 3.0. Created on: 020216

Copyright D.F. Hendry, 1990

VM>SI utils/tracemx.mnt

VM>SI utils/edit.mnt

VM>EDIT NEWFILE

170 Machine-Independent Organic Software Tools

MINT Text Editor 1.5. Date: 020218

VM>NOW TRMIX(@I)!

Instruction mix trace activated.

VM>I this is a test line of text.

Instruction mix for path from 41355 to 41360
Instructions traced: 03075

Op. Code Count %
FCN"s 95 03.08
1 GET 874 28.42
2 GETV 390 12.68
3 VAL 266 08.65
4 -> 239 07.77
5 DUP 121 03.93
6 LOSE 2 00.06
9 + 88 02.86
14 FROM 147 04.78
15 MASK 147 04.78
16 UNION 29 00.94
19 EQ 4 00.13
20 NE 31 01.00
22 GT 31 01.00
31 NO 66 02.14
32 GO 59 01.91
34 ENTRY 96 03.12
35 EXIT 95 03.08
50 <=> 58 01.88
53 ADV 60 01.95
56 -=> 89 02.89
57 <-- 88 02.86

Functions called:

Address Entry Number Count yA

40800 1 5 00.16
34210 PUTCH 29 1160 37.72
40905 1 610 19.83
40833 1 7 00.22
40881 1 8 00.26
34669 ADVCH 30 120 03.90
34154 GETCH 30 1140 37.07
34674 CHAR 1 9 00.29
40813 1 11 00.35
41355 I 1 5 00.16

M>

13. The VM (M) Virtual Machine

13.1 Introduction

This Chapter defines the architecture of the VM(M) Virtual Machine and
defines its instruction set. Emphasis is placed on the definition required for
implementation by interpretation or by micro-coding.

13.2 The Virtual Machine Architecture

The Virtual Machine consists of 4 major components:
e Main storage
e 2 Stacks

Instruction execution unit

Instruction set.

These components are defined in detail below. This definition is sufficient
for practical construction of a VM (M) machine.

13.2.1 Main Storage

The Virtual Machine main memory consists of two blocks of contiguous
storage units. The first block, used for data storage, must have storage units
of at least 32 bits. The second block, used for program storage, should also
have storage units of at least 32 bits. Earlier versions of MINT allowed data
storage of 16 bits and program storage of a minimum of 8 bits. The system
could still be compiled using such values, but this is no longer likely to be
useful. This addressable space is referred to as Virtual Store or VSTORE.
The main storage may be any size in a particular implementation, bear-
ing in mind that the MINT compiler together with the M-TRAN syntax
analysis system occupy about 6000 storage units. All instructions and data
are held in main storage. Section 1.10 and Figure 1-2 provide more detail
about storage organization.

172 Machine-Independent Organic Software Tools

13.2.1.1 Fixed Address Assignments

The first 81 locations in VSTORE cannot be used for normal programming
since their addresses overlap with the values assigned to the VM(M) oper-
ation codes. Therefore, this area is used to hold various system data items.
The current fixed VSTORE definitions are given in Table 13-1.

Table 13-1 VSTORE Fixed Address Assignments

Location identifier description

0 0
1 MAXDS$ no. of 128 word blocks in data-space
2 MAXPS$ no. of 128 word blocks in procedure-space
3 IDLOC$ initial DLOC value
4 CONTS$ address of abnormal status routine
5L SYSDATS$ 6
6 yy mm date of system
7 dd generation
8 MAXVS$ mno. of 1024 word blocks in VSTORE
9 EXOPTS$ VM execution options

10 word 2 of EXOPTS$

11 DREM divide remainder

12 L DATE 6

13 yy mm current date

14 dd

21 LL SYSID$ length of ID in characters

22 system ID

Locations 8 through 10 and 13 through 14 are set by the interpreter when
VSTORE is loaded. The variable MAXDSS$ is computed by the AUTO
directive and is Ng/128 (See Figure 1-2 and Section 14.6.1.1.). Similarly,
MAXPS$ is N,/128. The variable IDLOCS is set to the initial value re-
quired for DLOC. Initialization text in the compiler stores this value in
DLOC. The VM sets the value of MAXVS$ to the value, in 1024 word
blocks, of the top of Virtual Memory. The two word EXOPTS$ field is used
to contain information concerning execution options, and for Virtual Ma-
chine implementation indicators. This field is taken to be formatted as 26
bits for option letters a through z and 6 bits for indicators 1 through 6.

The VM(M) Virtual Machine 173
The format is as shown in Table 13.2.

Table 13-2 EXOPTS$ Definition

word meaning
9 a-p
10 q-z,6-1

The identifiers DATE, SYSDATS, and SYSID$ are introduced in class LAB
and, therefore, are not modifiable. All other locations are initially set in
VSTORE and may be reset during execution.

13.3 Virtual Machine Object Text Format

The MINT compiler and any systems written in MINT are distributed in
a standard format. This format, termed portable format, is composed of
text images containing blanks, hexadecimal numbers, and the characters
commal,), slash (/), minus(-), and period(.). Each text image is 80 char-
acters or less, and is terminated by a checksum and sequence number. A
blank character (040) follows the sequence number as the last character
of the image. As there are no embedded blanks, this may be used as an
end-of-image indicator. In all cases except one, numbers whose value is zero
are suppressed. Thus, there may be sequences such as ,, which are to be
interpreted as ,0,. The end-of-load sequence will normally be written with-
out zero suppression. The comma, slash, minus, and period characters act
as delimiters and indicators of the meaning of the preceding number. Table
13-3 defines the meaning of the delimiters.

Table 13-3 Portable Format Delimiters

delimiter meaning of preceeding number

unsigned data
/ address

- signed data
checksum

A character whose value is 023 indicates end-of-file. This is only used
in situations where an entire block of text must be split into more than one

174 Machine-Independent Organic Software Tools

physical file. A zero address value indicates the end of the load process.

The checksum is the accumulated XOR of each number in the image up
to the checksum number. The checksum is computed in the portable-format
output text, and should be checked in all portable-format read procedures.
The image sequence number starts at one and is incremented by one for
each successive image. Correct incrementation should also be checked on
reading. Note that the checksum and sequence numbers are, like all numbers
in portable format, in hexadecimal.

13.4 Loading the Virtual Machine

The Virtual Machine is loaded from a text file based on the field definitions
given in the previous Section. The first stage of loading is to set the contents
of all Virtual Store locations to zero. Next, the data values from the object
text file are loaded into sequential store locations starting with location 0.
When an address is encountered (delimiter character is slash) subsequent
data values are loaded into VSTORE starting at that address. The load
process continues until an address specification of zero is encountered. This
signifies the end of the object text file. Next, the interpreter supplied values
in low VSTORE (locations 9-10 and 13-15) should be set. At this point
the loaded program may be executed. This is always effected by storing
the start of procedure-space in the top of the link stack, and starting the
Virtual Machine.

Portable-format object text may be recorded on any medium which is
acceptable to the target machine. If the medium is not line image oriented,
such as paper tape, then the fields may simply continue serially until the
0/ field. In some environments it may be necessary to take steps to deal
with C/R-L/F sequences or other end-of-image indicators.

13.4.1 Example Portable Format Loading

The operation of the portable-format load process may be shown by ex-
amination of a sample of portable-format text and a procedure for loading
portable-format text into VSTORE. The sample text is from the beginning
of the diagnostics and is as follows:

1/100,17,1C8,8977,6,3238,3730,3831,C/6,10/4,6944,6761,15/1A,2424,9088. 1
17/2A2A,5320,4154,4B43,4520,4358, 5045, 4954 , 4EAF , 2420, 2A2A , D24, 2F0C. 2
23/25/11,2A20,2A2A,2024A ,4146,4C49,4445,2A20,2A2A,2A,3,4241,43,2B5C. 3
32/2F, ,6,25,4D56,4D28,2029,6964 6761, 6F6E, 7473 ,6369,2073,6170,171B.4
40/7373,6F20,656E,6320,6D6F ,6C70, 7465, 6465, 2E , FFFF-FFFE-FFFD-F490. 5

The VM(M) Virtual Machine 175

After initialization of VSTORE and setting of LP to zero, a portable-
format loader must start to accumulate characters and test each one against
the set of special characters. When a special character is encountered the
defined action must be taken. This is shown by the text listed below. Note
that, after the initial references to FNAME and IPAR, this text does not
reference any compiler procedures. If the FNAME and IPAR references
are replaced by explicit names and values, this routine could be used as
an initial VSTORE loader. For this purpose it should be established at
a VSTORE address above where loading will take place. At the end of
the load this routine executes a GO 32768, which transfers control to the
normal initial program start address. Also note that the manipulation for
the - control character is appropriate for a loader operating on a ones
complement machine. If the loader is to operate on a two’s complement
machine, - can be treated just like the , character.

13.4.2 Listing of PFLDR

*** Portable format loader
ref: PFLDR <file> <data start> <size> <program start> <size>

VAR SUM:O0, . Temp sum of numerical value

VAR CSUM:O, . checksum.

VAR SEQ:O0, . sequence counter.

VAR DSIZE:0, VAR PSIZE:O, . data and program size.

VAR DS:0, VAR PS:0, . data and program starts

VAR OFSET:O, . current offset

VAR ADD: O, . Next address to be stored into
VAR PFIN:O, . Text input segment id

VAR TMP:O, . Temp for current character

FN STORE: ENTRY, . Store value

SUM->(ADD FROM OFSET),
1 FROM ADD->QADD,

EXIT

FN ZERO: ENTRY, . Zero VSTORE
0->@SUM,
WHILE DUP GT ADD START STORE REPEAT,LOSE
EXIT

FN DMP:ENTRY, ->QTMP,EXIT

FN CKS:ENTRY, . Accumulate checksum
XOR(SUM, CSUM) ->@CSUM, EXIT

FN ACNUM:ENTRY,
(TMP GE #0) AND (TMP LE #9) THEN <SUMx16+TMP-#0->@SUM>
(TMP GE #A) AND (TMP LE #F) THEN <SUM*16+TMP-#A+10->Q@SUM>
EXIT

176 Machine-Independent Organic Software Tools

FN SEQN:ENTRY,
SUM NE CSUM THEN<OUTST(’Checksum error at: ’),0PINT(SEQ),
OPNL,ESTOP> 0->@SUM,
WHILE DMP(DUP(INCH(PFIN))) NE 13 START ACNUM REPEAT
DUP(SEQ+1) NE SUM THEN< OUTST(’Sequence error at: ’),0PINT,
OPNL,ESTOP> ->@SEQ, DUP(0)->@CSUM, ->@SUM, EXIT

DIR PFLDR: ENTRY,

OPENF (1,FNAME) , IPAR->@DS , IPAR->@DSIZE, IPAR->QPS,
IPAR->QPSIZE,->@PFIN, 32768+PS->QADD, ZER0(32768+PS+PSIZE) ,
DS->@ADD, ZERO (DS+DSIZE) ,DS->Q0FSET, 0->@ADD,0->QSUM,

WHILE DMP(DUP(INCH(PFIN))) NE 128 START
TMP EQ #, THEN<CKS,STORE, 0->@SUM>
TMP EQ #- THEN<CKS,XOR(65535,SUM),+1,NEG,->QSUM,

STORE, 0->QSUM>
TMP EQ #/ THEN<CKS,SUM->@ADD,SUM LT 32768 CHOOSE(DS,PS)
->QOFSET, 0->Q@SUM>
TMP EQ #. THEN<SEQN>
ACNUM,

REPEAT,

CLOSEF (PFIN) ,0->@PFIN,

GD 32768,

PAGE

13.4.3 Stacks

The Virtual Machine contains two stacks, each typically 100 storage units
in length. Each stack is independently controlled by pointer registers. The
two stacks are:

e The operand stack
e The link stack.

All the Virtual Machine instructions operate on operands (parameters)
obtained on the stacks. The operand stack is addressed by a register known
as the Stack Pointer (SP) which increments automatically when an object
is obtained on the stack, and decrements automatically when an object is
popped from the stack.

The link stack operates in a similar fashion and is addressed by a
register called the Link Pointer (LP). The link stack is used to control in-
struction execution sequencing since the instruction unit always executes
the instruction pointed to by the top item on the link stack. Normal instruc-
tion execution results in incrementation of the top item on the link stack
so that the next instruction is addressed. A procedure reference pushes an
item onto, and an EXIT pops an item from, the link stack.

The VM(M) Virtual Machine 177

13.4.4 The Instruction Execution Unit

The instruction execution unit carries out execution of the Virtual Machine
instructions in the following steps:

1. Fetch the instruction addressed by the top item on the link stack,
2. Increment the top item on the link stack by 1,

3. Execute the fetched instruction.

This execution process is continued until an event occurs which causes
a Virtual Machine halt.

Instructions are assigned numeric codes. The highest numbered in-
struction code permitted is 80. If a value greater than 80 is encountered
the instruction execution unit performs a procedure reference. The value is
processed as the address of a procedure, which causes the procedure address
to be pushed onto the link stack. The procedure referencing operations are
further explained in Section 13.5.10.

13.5 The Virtual Machine Instruction Set

The following paragraphs describe the instructions in the Virtual Machine.
In the diagrams SP and LP always point to the current top of the operand
and link stack respectively. The stacks themselves increment down the page.
The addresses of the sections of Virtual Store shown increase down the
page. Where relevant, store addresses are shown at the upper left corner of
the box which represents a unit of storage.

In several cases, contents of sections of the stacks are shown even
though the section is below the current stack pointer. The contents of such
sections are not logically accessible, but are shown, enclosed in parentheses,
for diagrammatic clarity.

13.5.1 Storage Access Primitives

The storage access primitives are operators which obtain objects on the
operand stack, store objects in the Virtual Store, or modify the contents
of a VSTORE location. The primitives in this group are:

GET
GETV

178 Machine-Independent Organic Software Tools

VAL
->
ADV

13.5.1.1 The GET Primitive

The GET primitive pushes onto the operand stack the contents of the
Virtual Store location following the GET operator, and increments the top
item on the link stack by 1. Since the instruction execution unit always
increments the top item on the link stack by 1, the effect after instruction
completion is that the item has been incremented by 2. The operation of
GET is illustrated in Figure 13-1.

13.5.1.2 The GETV Primitive

The GETV primitive is similar to the GET primitive; the difference being
that one level of indirect addressing is applied to the operand. The value
following the instruction is used as the VSTORE address from which to
obtain the item. This is illustrated in Figure 13-2.

13.5.1.3 The VAL Primitive

The VAL primitive treats the top object on the stack as a virtual address
and replaces it with the contents of that address. See Figure 13-3.

13.5.1.4 The -> Primitive

The -> primitive treats the top object on the stack as a virtual address
and stores the next object on the stack in that address. Both these objects
are removed from the stack by decrementing the Stack Pointer (SP) two
locations. This is illustrated in Figure 13-4. After execution, virtual location
616 contains the value 250.

13.5.1.5 The ADV Primitive

The ADV primitive treats the top item on the operand stack as a VSTORE
address, and increments by one the contents of the location at that address.
This operation is illustrated in Figure 13-5.

The VM(M) Virtual Machine 179

Link Instruction Operand
stack sequence stack

LP —= 400 GET SP ——» wkkx
| : |
| |
! | 1234 !
L l .
L __ | L __

Before Execution

LP — 402 GET HHAH

1234 SP — 1234

After Execution

Figure 13-1 Operation of GET

180 Machine-Independent Organic Software Tools

Link Instruction Operand VSTORE
stack sequence stack
1233
1234
I I I I
I I I I
I I I I
! ! 1234 ! !
| I r-———"=-=== I
I I I I
I I I I
I I I I
I I I I
. ! . !

Before execution

1233

1234
LP — 402 - GETV sfeokskok 616

| |
! ! 1234 SP —f 616
| |
| |

After execution

Figure 13-2 Operation of GETV

The VM(M) Virtual Machine 181

Link Instruction Operand

stack sequence stack VSTORE
1233
1234
» 400 VAL 616
I I
| : SP — 1234
I I
r-——-—-=-=-= I
I I I I
I I I I
I I I I
I I I I
L ___ ! L ___ !
Before execution
1233
1234
I I
I : SP —» 616
I I
I :

After execution

Figure 13-3 Operation of VAL

182 Machine-Independent Organic Software Tools

link Instruction Operand

stack sequence stack VSTORE
1233
1234
LP + 400 - > 250
HoAkk
| |
| | SP — 1234
| |
r-———"7>="=- |
L ! L !		
Before execution		
1233		
SP —»		
, 11234		
LP =+ 401 -> i (250) 250		
r—-———"7===- I		
: : bo(1234)		
r-———"7>="=-	r—-———"7===- I	
L ! L !

After execution

Figure 13-4 Operation of — >

The VM(M) Virtual Machine 183

Link Instruction Operand

stack sequence stack VSTORE
1233
1234
> 400 ADV
250
I I
| | SP — 1234
I I
r-——-—-=-=-= I
I I I I
I I I I
I I I I
I I I I
L ___ ! L ___ !
Before execution
1233
1234
» 401 ADV SP —»f 251

After execution

Figure 13-5 Operation of ADV

184 Machine-Independent Organic Software Tools

13.5.2 Operand Stack Manipulation

The following operators allow efficient manipulation of the operand stack:

DUP
LOSE
<=>

13.5.2.1 The DUP Primitive

The DUP primitive obtains on the stack a duplicate copy of the top object
as illustrated in Figure 13-6.

13.5.2.2 The LOSE Primitive

The LOSE primitive discards the top object from the stack as illustrated
in Figure 13-7.

13.5.2.3 The <=> Primitive

The <=> primitive removes the top two items on the operand stack. It then
first pushes the first object and then the second object. Thus, the order of
the two objects on the stack is reversed. The operation of <=> is illustrated
in Figure 13-8.

— 401 DUP

The VM(M) Virtual Machine 185

Link Instruction Operand

stack sequence stack
— 400 DUP

| |

| | SP — 7146

| |

A |

Before execution

I I
: : 7146
I I
I I

I I
\ \ SP —— 7146
I I
I I

After execution

Figure 13-6 Operation of DUP

186 Machine-Independent Organic Software Tools

Link Instruction Operand

stack sequence stack
LP —— 400 LOSE

| |

| | SP —— 1212

| |

A |

Before execution

LP —— 401 LOSE SP —

After execution

Figure 13-7 Operation of LOSE

— 401 <=> 1212

The VM(M) Virtual Machine 187

Link Instruction Operand

stack sequence stack
— 400 <=> 9898

| |

| | SP —— 1212

| |

A |

Before execution

| |
| | SP —— 9898
| |
| |

After execution

Figure 13-8 Operation of <=>

188 Machine-Independent Organic Software Tools

13.5.3 Link Stack Manipulation

13.5.3.1 The GLKP and SLKP Primitives

The GLKP primitive obtains on the operand stack the current contents of
the Link Pointer (LP) register. The address thus obtained is not a valid
VSTORE address as neither of the two stacks is located in VSTORE. The
only useful operation that may be performed on the obtained LP register
contents is to subsequently reload the LP register with it. This is effected by
means of the SLKP operator which pops the top object from the operand
stack, loads the LP register with it, and then stores the value previously
addressed by the LP register at the new LP register address. Figures 13-9
and 13-10 illustrate the operation of GLKP and SLKP respectively.

Because of the above restrictions on the use of GLKP and SLKP the
instructions are normally used together. On entry to a given function the
Link Pointer may be stored in a variable. If this function references other
functions it may be desired to exit from the nested function directly to the
original referencing text. This is achieved by first setting the Link Pointer
from the variable and then executing the EXIT primitive.

Arithmetic operations performed on the accessed Link Pointer are in-
valid. Thus,

SLKP(GLKP-4)

must not be interpreted to mean that on execution of the EXIT primitive
the user will be exited from a four deep nested function to the original
object text reference point.

It is also not valid programming to execute an SLKP instruction with
a value on the operand stack which is greater than the current value of LP.
The Virtual Machine should treat such an operation as illegal.

LP

— 401 GLKP

The VM(M) Virtual Machine

Link Instruction Operand
stack sequence stack

3

4

5

—— 400 GLKP

| |
! ! Sp o REEE
| |
r-———"7>="=- |

Before execution

Kokkok

After execution

Figure 13-9 Operation of GLKP

189

190 Machine-Independent Organic Software Tools

Link Instruction Operand
stack sequence stack

3

4

5

LP ——{ 400 SLKP
I I
| | SP —» 3
I I
r-——-—-=-=-= I
I I I |
I I I |
I I I |
I I I |
L ___ ! L ___ !
Before execution
3
LP ——{ 400 |—

41 |
I I
I I
I I
I I
r-——-—-=-=-= I

51 1
(400) | SLKP SP —»
I I
r-——-—-=-=-= I
I I I |
I — o3
I I I |
I I I |
r-——-—-=-=-= I r-——-—-=-=-= |
I I I |
I I I |
I I I |
I I I |
L ___ ! L ___ !

After execution

Figure 13-10 Operation of SLKP

The VM(M) Virtual Machine 191

13.5.4 Arithmetic Operators

This group of primitives includes the word arithmetic operators and binary
operators. In the current Virtual Machine all arithmetic operations are
performed on integer quantities only. The operators in this group are:

+

*

/

NEG
MASK
UNION
DIFFER
COMPL

Most of the primitives in this group operate on two objects and return
a single result on the stack. The exceptions are the NEG and COMPL
operators.

At present the result of arithmetic exceptions, such as divide by zero,
is left to the implementer of each Virtual Machine. The MINT system itself
does not depend on any definition of such results.

13.5.4.1 The + Primitive

The + primitive computes the integer sum of the top two objects on the
operand stack and replaces them with a single object which is the result.
The + operation is illustrated in Figure 13-11.

13.5.4.2 The — Primitive

The — primitive computes the integer difference between the top two ob-
jects on the stack and returns the result to the stack. Note that the order
of the operands is significant; the top object on the stack is the second
operand, and the next object down is the first operand. This is illustrated
in Figure 13-12 by computing 99-71.

13.5.4.3 The x Primitive

The * primitive computes the integer product of the two top objects on
the stack and returns it as a single result. The operation logic is the same

192 Machine-Independent Organic Software Tools

as that for + as shown in Figure 13-11, with * substituted for 4.

13.5.4.4 The / Primitive

The / primitive computes the integer quotient of the top two objects on
the stack and returns it as a single object. The operation logic is the same
as that for — as shown in Figure 13-12; with / substituted for —. The
remainder is stored in the variable DREM. The quotient is not rounded.
Thus,

17 / 3 yields 5.

13.5.4.5 The NEG Primitive

The NEG primitive replaces the top operand on the stack with its negative
value. This operation should yield the same result as multiplication by
minus one. The SP is not modified. See Figure 13-13.

The VM(M) Virtual Machine 193

Link Instruction Operand
stack sequence stack
— 400 + 14
I I
I I SP — 25
I I
r-——-—-=-=-= I
I I I |
I I I |
I I I |
I I I |
L ___ ! L ___ !
Before execution
— 401 + SP —» 39
I I I |
| | L(25)
I I I |
I I I |
r-——-—-=-=-= I r-——-—-=-=-= |
I I I |
I I I |
I I I |
I I I |
L ___ ! L ___ !

After execution

Figure 13-11 Operation of +

194 Machine-Independent Organic Software Tools

Link Instruction Operand
stack sequence stack
LP —— 400 — 99
| |
: : SP —» 71
| |
A |

Before execution

LP —— 401 - SP —» 28

After execution

Figure 13-12 Operation of —

The VM(M) Virtual Machine 195

Link Instruction Operand
stack sequence stack
— 400 NEG
I I
| | SP —» 5
I I
r-——-—-=-=-= I
I I I |
I I I |
I I I |
I I I |
L ___ ! L ___ !
Before execution
— 401 NEG
I I
| | SP ——» =5
I I
r-——-—-=-=-= I
I I I |
I I I |
I I I |
I I I |
L ___ ! L ___ !

After execution

Figure 13-13 Operation of NEG

196 Machine-Independent Organic Software Tools
13.5.4.6 The MASK Primitive

The MASK primitive is a binary arithmetic operator which applies a binary
AND to the top two objects on the stack and returns a single result. This
is illustrated in Figure 13-14.

13.5.4.7 The UNION Primitive

The UNION primitive applies a binary inclusive or to the top two items
on the stack and returns a single result. Thus,

101100 UNION 111001

yields 111101.

13.5.4.8 The DIFFER Primitive

The DIFFER primitive applies a binary exclusive or to the top two items
on the stack and returns a single result. Thus,

110011 DIFFER 101100

yields 011111.

The operation Figure for MASK (Figure 13-14) applies for the logic of
DIFFER.

13.5.4.9 The COMPL Primitive

The COMPL primitive is analogous to the NEG (Figure 13-13) operator
but COMPL replaces the top item on the stack with its binary ones com-
plement. Thus,

COMPL (110101)

yields 001010.

The operation Figure for NEG applies for the logic of COMPL.

The VM(M) Virtual Machine 197

13.5.5 Address Arithmetic Operators

13.5.5.1 The FROM Primitive

The FROM primitive provides a means of computing offsets from addresses.
FROM expects two operands on the stack. It adds these two operands,
using address arithmetic, and leaves the result on the stack. Thus, the logic
of the operation of FROM is the same as for +. However, the numerical
result may not be the same due to possible variation in VSTORE addressing
techniques used by Virtual Machines. Normal arithmetic must use 4, while
all address arithmetic must use FROM. If an implementation makes direct
use of byte addressing in the Virtual Machine implementation, and a MINT
word is composed of two bytes,

5 FROM 100

would yield 110. The logic of FROM is as shown for + in Figure 13-11. How-
ever, the result must be correct for VSTORE word addresses as explained
above.

13.5.5.2 The ADIFF Primitive

The ADIFF primitive computes the difference between two address items.
As is true for the FROM operator, the arithmetic must be carried out in
the units of addressing in the Virtual Machine implementation. The logic
of the ADIFF operator is as shown for the — operator in Figure 13-12.

198 Machine-Independent Organic Software Tools

Link Instruction Operand

stack sequence stack
LP —— 400 MASK 110101

I I

: | SP —— 011011

I I

A |

Before execution

LP —— 401 MASK SP ——{ 010001

After execution

Figure 13-14 Operation of MASK

The VM(M) Virtual Machine 199

13.5.6 Logical Shift Operators

The two operators in this group provide the ability to shift the contents of
a word by a number of bit positions from 0 through 31. The operators shift
right and left respectively:

-—> - right shift logical,
<-- - left shift logical.

These are defined as logical shifts and therefore any bits which are shifted
out of the word are discarded. For implementations on machines which do
not naturally perform operations on 32 bit words it is necessary to mask
off any excess bits or otherwise compose the correct 32 bit result. Figure
13-15 shows the operation of -->. The operation of <-- is exactly the same
except the data in the word are shifted left. Note that these operator names
are composed of two minus signs and the < or > symbol.

200 Machine-Independent Organic Software Tools

Link Instruction Operand

stack sequence stack
LP —— 400 - > 32

| |

| | SP —» 3

| |

A |

Before execution

LP — 401 - > SP —» 4

After execution

Figure 13-15 Operation of —— >

The VM(M) Virtual Machine 201

13.5.7 Relational Operators

This group of operators arithmetically compares the top two objects on the
operand stack and returns in their place a single Boolean object whose value
is either true or false. This is illustrated in Figure 13-16. The representation
of the quantities true and false in the Virtual Machine is arbitrary. Typically
the values 1 and 0 are chosen for true and false respectively. For op2 the
top object on the stack and opl the next object, the relational operators
are:

EQ - test opl equal to op2

NE - test opl not equal to op2

LT - test opl less than op2

GT - test opl greater than op2

LE - test opl less than or equal to op2
GE - test opl greater than or equal to op2

Satisfaction of a relational test returns the quantity true to the stack. Oth-
erwise the quantity false is returned.

13.5.8 Logical Operators

The logical operators are analogous to the binary arithmetic operators, but
operate on Boolean operands instead of integer operands. The operators in
this group are:

NOT - equivalent to COMPL
AND - equivalent to MASK
OR - equivalent to UNION
XOR - equivalent to DIFFER

Figure 13-17 illustrates the operation of AND, OR, and XOR. Figure 13-13
illustrates the logic of NOT, substituting a Boolean object on the stack.
For all of these operators, the standard rules of Boolean algebra are to be
implemented.

202 Machine-Independent Organic Software Tools

Link Instruction Operand
stack sequence stack
LP —— 400 RELOP Opl
| |
| | SP —— Op2
| |
A |

Before execution

LP —— 401 RELOP SP — Result

After execution

Figure 13-16 Operation of RELOP

— 401 LOGOP SP — Result

The VM(M) Virtual Machine 203

Link Instruction Operand

stack sequence stack
— 400 LOGOP Booll

I I

| | SP —— Bool2

I I

A |

Before execution

After execution

Figure 13-17 Operation of LOGOP

204 Machine-Independent Organic Software Tools

13.5.8.1 The CHOOSE Primitive

The CHOOSE primitive tests a Boolean object on the stack, and selects
one of two remaining objects based on the value of the Boolean object. This
is illustrated in Figure 13-18. Note the order of the objects on the stack. If
the Boolean object is true then opl is returned as the result. If the Boolean
object is false, op2 is returned as the result.

13.5.9 Control Transfer Primitives

This group consists of those primitives that directly affect the value of the
top item on the link stack. These are:

GO
YES
NO
TRUE
FALSE

13.5.9.1 The GO Primitive

The GO primitive pops the link stack, pops the top item from the operand
stack, and pushes this item onto the link stack. The object on the operand
stack is assumed to be a valid virtual address. Figure 13-19 illustrates the
operation of GO. Since this operation replaces the top item on the link
stack, the address of the GO operator is lost.

13.5.9.2 The YES Primitive

The YES primitive removes two objects from the operand stack. It tests
the second object as a Boolean value. If this value is true, the link stack is
popped and the first object from the operand stack is pushed onto the link
stack. If the value is false, the link stack is not affected and, therefore, exe-
cution continues to the next sequential instruction. Figure 13-20 illustrates
the operation of YES for a true value case.

13.5.9.3 The NO Primitive

The NO primitive is the converse of YES. It operates on the link stack only
if the Boolean object is false. Figure 13-21 illustrates the NO operator for
a true case.

The VM(M) Virtual Machine 205

13.5.9.4 The TRUE Primitive

The TRUE primitive provides a conditional skip of a single instruction.
It expects a Boolean object on the stack. If this object is true, the next
instruction is executed. If the object is false the next instruction is skipped.
In any case the object is popped from the stack. Note that since GET and
GETYV are instructions which are two words long, in these two cases the
skip must increment the link stack value by 2. The operation of TRUE is
illustrated in Figure 13-22. This Figure is for a non-skip case. See Figure
13-23 for a skip case.

13.5.9.5 The FALSE Primitive

The FALSE primitive operates exactly as the TRUE operator except that
the skip occurs if the Boolean value is true, and normal execution continues
if the value is false. This is illustrated in Figure 13-23 for a true case. This
Figure also shows the special incrementing which is required if TRUE or
FALSE are followed by a GET or a GETV.

206 Machine-Independent Organic Software Tools

Link Instruction Operand
stack sequence stack
Bool
LP —— 400 CHOOSE Opl
| |
| | SP —— Op2
| |
A |

Before execution

| |
LP —— 401 CHOOSE i (Opl) |
| |
| |

After execution

Figure 13-18 Operation of CHOOSE

LP

The VM(M) Virtual Machine

Link Instruction Operand
stack sequence stack

3

4 399

5 400

— 400 GO

! 1401
| | SP —— 1276
| |
A |

402

Before execution

3

4 1275

) 1276

— 1276 HoAkok SP —»

. 11277 ' !
: : (1276) |
| | | I
r————---- 1 r————---- |
1 11278 1 1
L ! L !

After execution

Figure 13-19 Operation of GO

207

208 Machine-Independent Organic Software Tools

Link Instruction Operand
stack sequence stack

3

4 399

5 400

LP —— 400 YES True

! 1401
\ \ SP ——{ 1096
I I
A |

402

Before execution

3
4 1095
SP —»

5 1096 ! !
LP ——{ 1096 ook | (True) |
I |
A |
1 11097 1 1
: : L (1096) |
| | | i
| I r-———"=-=== |
1 11098 1 1
I I I |
I I I |
I I I |
L ! L !

After execution

Figure 13-20 Operation of YES

The VM(M) Virtual Machine 209

Link Instruction Operand
stack sequence stack
— 400 NO True
I I
: : SP ——{ 1096
I I
r-——-—-=-=-= I
I I I |
I I I |
I I I |
I I I |
L ___ ! L ___ !
Before execution
SP —»
I |
— {401 NO | (True) |

I I

r-——-—-=-=-= |
I I I |
: : L (1096) |
I I I I
r-——-—-=-=-= I r-——-—-=-=-= |
I I I |
I I I |
I I I |
I I I |
L ___ ! L ___ !

After execution

Figure 13-21 Operation of NO

210 Machine-Independent Organic Software Tools

Link Instruction Operand

stack sequence stack
LP —— 400 TRUE

I I

: : SP —— True

I I

A |

Before execution

LP —— 401 TRUE SP —

After execution

Figure 13-22 Operation of TRUE

— 403 GET SP —

The VM(M) Virtual Machine 211

Link Instruction Operand
stack sequence stack
FALSE

—— 400 GET
I I
| | 97 SP —— True
| |
| I
I I I |
I I I |
I I I |
I I I |
. ! . !

Before execution

FALSE

i i 97 i (True) i

After execution

Figure 13-23 Operation of FALSE

212 Machine-Independent Organic Software Tools

13.5.10 Procedure References

A procedure reference is effected in one of two ways:

1. Implicit procedure reference
2. The DO operator.

As mentioned in Section 13.4.4, any op-code with a value greater than 80 is
interpreted as a procedure reference. This is termed an implicit reference to
a procedure. When a procedure is referenced, either implicitly or by means
of the DO operator, the procedure address is pushed onto the link stack.
Figure 13-24 illustrates an implicit procedure reference. The top item on
the link stack is incremented before the new item is pushed onto the stack.

13.5.10.1 The DO Primitive

The DO primitive pops the top object from the operand stack and inter-
prets it as a procedure address or, if the value of the object is less than
or equal to 80, it interprets it as a reference to a primitive. It then effects
an implicit procedure reference using that address, or transfers control to
the primitive. Operation for a procedure reference is illustrated in Figure
13-25.

13.5.10.2 The ENTRY Primitive

In the current Virtual Machine definition the ENTRY operation does noth-
ing, as procedure references are generated in-line. However, some procedure
entry steps, or other computation, may be embodied in the ENTRY op-
eration if the implementer so wishes. A procedure is not correctly written
unless its first reference is ENTRY.

13.5.10.3 The EXIT Primitive

The EXIT primitive is used to return from a procedure. It does this by
popping the top address from the link stack. This causes the top of the
link stack to point to the instruction following the last procedure reference.
This is illustrated in Figure 13-26.

The VM(M) Virtual Machine 213

Link Instruction Operand

stack sequence stack
399
400

—— 400 2179

! 1401

! ! Sp o REEE

| |

r-———"7>="=- |

402

Before execution

217§

2179

218

— 2179 SP ——f Rk

! 12181 ! !
I I I I
I I I I
L ! L !

After execution

Figure 13-24 Operation of Implied DO

214 Machine-Independent Organic Software Tools

Link Instruction Operand

stack sequence stack
399
400

LP —— 400 DO

! 1401

| | SP —— 2179

| |

A |

402

Before execution

2178
2179
401 Horrx SP —

218 : :

LP —— 2179 L (2179) |

: I

r-———"=-=== |

; ' 2181 ; |

I I I |

I I I |

I ! I !

After execution

Figure 13-25 Operation of DO

The VM(M) Virtual Machine 215

Link Instruction Operand
stack sequence stack

598

599

401
600
— 600 EXIT SP ——— kdkk

| | 601 | I
| | | |
| | | |
. ! . !

Before execution

400
401
! 1402
i (600) | SP —— FREE
: :
| I
: ! 403 | :
I I I |
I I I |
L ! L !

After execution

Figure 13-26 Operation of EXIT

216 Machine-Independent Organic Software Tools

13.5.11 The String Primitives
The string primitives are:

GETCH
PUTCH
MATCH
DICMATCH

13.5.11.1 The GETCH Primitive

The GETCH primitive obtains a character from a MINT string. Its ar-
gument is a character address pair (CAP) address. The character to be
obtained is pointed to by the index in the CAP. The index is not affected
by the operation. If the CAP index value is greater than the length of the
string, a zero value is obtained. The operation of GETCH is illustrated in
Figure 13-27. In the C implementation, GETCH is provided by a MINT
function found in MINTSUBS. It is:

GETCH:ENTRY
DUP->@STRAD, VAL(1 FROM STRAD)->@CHNO, DUP(VAL)->@STRAD,
VAL() GT CHNO THEN<VAL((1+(CHNO-->2)) FROM STRAD),
-->((CHNO MASK 3)<--3), MASK 255
ELSE 0>
EXIT

13.5.11.2 The PUTCH Primitive

The PUTCH primitive stores a character into a MINT string. The two ar-
guments for the operation are the CAP address and the character which is
to be stored. The PUTCH operation stores the character using the CAP
index to determine the character position within the string. No other char-
acters in the string are affected, and the CAP index is unchanged. The
character is always stored, even if the CAP index points beyond the cur-
rent string length. The operation of PUTCH is illustrated in Figure 13-28.
In the C implementation, PUTCH is provided by a MINT function found
in MINTSUBS. It is:

PUTCH:ENTRY
<=>, ->@STRAD, VAL(1 FROM STRAD)->QCHNO,
(1+(CHNO-->2)) FROM VAL(STRAD)->@STRAD,
VAL (STRAD) MASK VAL((CHNO MASK 3) FROM @CMSK),
<=>, <--((CHNO MASK 3)<--3), UNION, ->STRAD,
EXIT

LP » 401

The VM(M) Virtual Machine 217

Link Instruction Operand

stack sequence stack VSTORE
2104 [
CAP
3
4
LP »{ 400 GETCH| <
2104
| | Sp 9 Nl
| | —@QCAP
[| 2105
! !) | d c b g)
! ! E_ E > String
____________ h gf e
i
4
Before execution
2104 [
CAP
3
4
GETCH
~
_|—' 2104
I I 9 Nl
I I SP—D d
Lo : 2105
! !) | d c b g)
! ! ! ! > String
_______ | R —— |
h gf e
i
4

After execution

Figure 13-27 Operation of GETCH

218 Machine-Independent Organic Software Tools

Link Instruction Operand

stack sequernce stack VSTORE
2104
CAP
3
J
LP » 400 PUTCH] QCAP <
2104
| | 9 -
|] SP—D z
Lo : 2105
! !) | d c b g)
| | ! ! > String
_______ |
h gf e
i
J
Before execution
2104
CAP
SP —» 3
J
LP » 401 PUTCH| (QCAP) -
| |
1 I o204 L
: : L@
| | | |
Lo ! F----- | 2105
! !) | z c b g)
| | ! ! > String
_______ |
h gf e
i
J

After execution

Figure 13-28 Operation of PUTCH

The VM(M) Virtual Machine 219

13.5.11.3 The MATCH Primitive

The MATCH primitive matches a key string against a test string addressed
by a character address pair (CAP). The CAP and string structures are
described in Chapter 10. MATCH has two operands:

1. The address of the key string
2. The address of the CAP.

MATCH returns a single Boolean result which is determined in the follow-
ing manner. The key string character count from the first word of the string
is used as a loop count. In the loop, each character in the key string is com-
pared with each character in the test string. The first character to be tested
in the latter is that addressed by the CAP. A match condition occurs when
the loop count decrements to zero without a character mismatch. Two con-
ditions can result in a non-match result. First, there may be a mismatch
between two of the characters being compared. Second, the end-of-string
may be encountered on the test string; i.e. the key string contains more
characters than remain in the test string. When a successful match occurs
a Boolean true is returned to the stack. In addition, the character index
in the CAP is set to the index of the character following the last matched
character. In the case of a non-match, a Boolean false is returned to the
stack and the character index in the CAP for the test string is unaffected.
A match will always occur if the key string length is zero. In this case the
character index value in the CAP is unaffected. The operation of MATCH
is illustrated in Figure 13-29.

13.5.11.4 The DICMATCH Primitive

The DICMATCH primitive repeatedly applies the MATCH operation to
each entry in a list. MINT list format is described in Section 9.2. The
DICMATCH operator has three operands:

1. Address of list pointer (listp)
2. Address of list end (listend)
3. Address of test string CAP

DICMATCH operates on the test string in an identical manner to the
MATCH primitive. It uses the string in each list record as a key string
until a match occurs, or until the end of the list is reached (listend). If

220 Machine-Independent Organic Software Tools

a successful match occurs the DICMATCH operator returns to the stack
the address of the previous record to the one that matched; i.e. if record
2 matched the test string, the address of record 1 would be returned; if
record 1 matched, the address of the list pointer (listp) would be returned.
As with the MATCH primitive the CAP index is updated. In the case of a
non-match the address of the last list record is returned to the stack and
the CAP index is unaffected. The operation of DICMATCH is illustrated
in Figure 13-30.

The VM(M) Virtual Machine 221

Link Instruction Operand

stack sequence stack VSTORE
CAP String
—» 2104 13
2 DCBA
» 400 ATCH Qkstring | key string HGFE
- L
| | SP—» QCAP LKJI
I I
S | ! ! EDC
I I | | M
I I | |
L ! Lo |
Before execution
2104 13
5 DCBA
» 401 MATCH SP—-»{ True HGFE
I I—|_' } | 3
I I (QCAP) LKJI
I I I I
i \ bomme- ! EDC
I I | | M
I I | |
L ! Lo |

After execution

Figure 13-29 Operation of MATCH

222

Machine-Independent Organic Software Tools

Link Instruction
stack sequence
> 400 DICMATCH
I I
I I
I I
L= I
I I
I I
I I
I I
> 401 DICMATCH

Operand

StaCk VSTORE
CAP String
—» 2104 13
@listp 2 DCBA
@listend listp HGFE
L»record]
SP—» QCAP LKJI
. . record 1
| | M
:_ _____ : L hnk >
4
W Zy X
Before execution
2104 13
SP—4~I‘€COI‘d D 5 DCBA
(E@listendi) record 3 HGFE
!_ _____ ! — link |»
(QCAP) LKJI
N
I I M
I I
bomoo- ! EDC

After execution

Figure 13-30 Operation of DICMATCH

The VM(M) Virtual Machine 223

13.5.12 External Interface Primitives

The external interface provides for access to information which is not in
VSTORE. In general the containers of such information are referred to as
external segments. The VM(M) instructions which reference such segments
use the segment index which is assigned to each such segment. The main use
of this structure is for obtaining information from or transmitting informa-
tion to files or devices. Both sequential and index-based access mechanisms
are provided. The INCH and OPCH operators provide sequential access,
while the SEGIO operator provides an indexed record mechanism.

All external segments must be opened before use, except for the pri-
mary I/O interface which is always considered to be open for input and out-
put. This primary I/O interface uses segment index zero, and is normally
an interactive console device. It is the OPENF primitive which obtains the
segment index which is used by all accessing primitives.

13.5.12.1 The OPENF Primitive

The OPENF primitive uses the segment type and the string address sup-
plied on the stack to open a segment for the requested function. It obtains
a unique external segment index. The standard defined segment types are
given in Table 10-1.

13.5.12.2 The CLOSEF Primitive

The CLOSEF primitive uses the supplied segment index to release the
segment associated with that index.

13.5.12.3 The INCH Primitive

The INCH primitive is used to obtain the next character from a speci-
fied segment. INCH requires one argument which is the segment index. It
returns a single argument which is the next character from the segment.
Characters are always produced from a segment in sequential order starting
with the first character. If an INCH primitive is referenced after the last
character has been produced the Virtual Machine returns the hex value
0x100. This is intended to indicate that no more data are available from
the segment, i.e. an end-of-segment condition. After the end-of-segment
condition has been reached the 0x100 value should be returned for further
INCH references to that segment. A CLOSEF, OPENF sequence should
reestablish initial operation. For magnetic tape files, end-of-segment is to

224 Machine-Independent Organic Software Tools

be interpreted as end-of-file. The CLOSEF, OPENF sequence then allows
operation on the next tape file. Since the C/R character is used to indicate
end-of-string, or end-of-line, the Virtual Machine should generate a C/R
character after the last character in a line in cases where the system inter-
face provides line images. Whatever the structure of the system interface,
the Virtual Machine should make it appear that lines are separated only by
the C/R character. Any additional characters, such as LF or NUL, should
only be returned if they are intended to be a part of the input to MINT.
The operation of INCH is shown in Figure 13-31.

13.5.12.4 The OPCH Primitive

The OPCH primitive transmits a character to a destination segment. Its
operands are the destination segment index and the character which is
to be transmitted. Since any character value may be transmitted by the
OPCH operator end-of-line may be indicated by transmission of the C/R
character. The operation of OPCH is illustrated in Figure 13-32.

13.5.12.5 The SEGIO Primitive

The SEGIO primitive provides a record, or block, structured mechanism for
transferring data between external segments and VSTORE. The records are
referenced by their index values. Since SEGIO shares the same primitive
operation code (39) as OPCH, the VM distinguishes between an OPCH
reference and a SEGIO reference by means of the type value supplied when
the OPENF operation was performed on the segment. The OPENF type
value 3 causes the operation to be treated as a SEGIO reference. The
structure of the table whose address is provided on the SEGIO reference is
as follows:

Table 13-4 SEGIO Table Definitions

word meaning

0 source segment number

1 target segment number

2 length of record in words

3 record index

4 VSTORE address of record

The direction of data transfer for a SEGIO operation is determined by
the source and target segment index values. If the source index is zero

The VM(M) Virtual Machine 225

the transfer is from VSTORE to the target segment. If the target segment
index is zero the transfer is from the source segment to VSTORE. Use of
SEGIO with both the source and target indices zero or both nonzero is not
allowed. The length value in word 2 should remain constant for any specific
segment. The record index is defined to have the value 1 for the first record
in the segment, and increments by one for each succeeding record.

226 Machine-Independent Organic Software Tools

Link Instruction Operand

stack sequence stack
LP —— 400 INCH

| |

| | SP —— index

| |

A |

Before execution

LP —— 401 INCH

After execution

Figure 13-31 Operation of INCH

The VM(M) Virtual Machine 227

Link Instruction Operand

stack sequence stack
— 400 OPCH index

I I

| | Sp—

| |

| I

I I I |

I I I |

I I I |

I I I |

. ! . !

Before execution

| |
— 401 OPCH | (index) |
| |
| |

After execution

Figure 13-32 Operation of OPCH

228 Machine-Independent Organic Software Tools

Link Instruction Operand

stack sequence stack
LP ——{ 400 SEGIO index

I I

| | SP ——» @table

I I

A |

Before execution

| |
LP —— 401 SEGIO | (index) |
| |
| |

After execution

Figure 13-33 Operation of SEGIO

The VM(M) Virtual Machine 229
13.5.13 Miscellaneous Primitives

This set of primitives is not mandatory for the Virtual Machine but has
been found to be useful. The primitives in this group are:

STOP
ESTOP
PDUMP
TIME
EXR
TRAP
EMULATE

13.5.13.1 The STOP Primitive

The STOP primitive exits from the Virtual Machine. The STOP opera-
tor should be used for normal termination conditions. For implementations
within an operating system environment this operator should cause a nor-
mal return to the system. In stand-alone implementations, STOP should
return to a Virtual Machine routine which may then call the VSTORE load
routines.

13.5.13.2 The ESTOP Primitive

This operator functions as the STOP operator, but is for error termination
conditions. The compiler references ESTOP under error conditions. All
implementations should print the current contents of the stacks as a result
of an ESTOP reference. It is not assumed that the Virtual Machine can
automatically be restarted after a STOP or ESTOP.

13.5.13.3 The PDUMP Primitive

The PDUMP primitive is used to perform a store-image dump of Virtual
Store. In many implementations, such a store image will allow faster loading
of VSTORE than by means of the portable-format loader. Systems with
high speed, large granularity, I/O capability will tend to benefit from the
use of PDUMP. It is natural to implement PDUMP as, essentially, a paging
structure. PDUMP is not tested by the Virtual Machine diagnostics and is
not part of the normal system instruction set.

The CDUMP (See Section 6.6.5) directive uses PDUMP to write VS-
TORE.

230 Machine-Independent Organic Software Tools
13.5.13.4 The TIME Primitive

The TIME primitive provides the means of obtaining the current time. It
is intended that the implementation return the current time in seconds
from midnight. However, this primitive is considered optional and may be
modified to suit special implementation needs.

13.5.13.5 The EXR Primitive

The purpose of this operator is to allow communication with the host oper-
ating environment for purposes which are not provided by the other defined
primitives. The implementation of this primitive is optional and is neces-
sarily implementation dependent. Normally a string parameter is supplied.
This string is to be interpreted by the host environment.

13.5.13.6 The TRAP Primitive

The purpose of the TRAP primitive is to provide a means of intercepting
the execution of VM(M) Virtual Machine instructions. One purpose of such
interception is to provide a display of instruction execution. The TRAP
primitive is required for the operation of the T$ directive, which provides
such a display. The operation of the TRAP primitive is as follows:

Trapping has two state indicators, TRACTIVE (ACTIVE or INAC-
TIVE) and TRON (ON or OFF). If trapping is ACTIVE at the start of the
interpreter main instruction processing loop (prior to the instruction fetch
and LP register incrementation) the current instruction is not executed.
Instead, the interpreter sets TRACTIVE to INACTIVE, pushes the top
item on the link stack onto the operand stack, and executes a DO, thus
referencing the procedure whose address is on the stack.

There are two actions which may be carried out when the TRAP prim-
itive is referenced. If either trapping is ACTIVE and ON or it is INACTIVE
and OFF then the following actions are carried out:

DUP -> @QTRON

-> QTRACTIVE

This, in effect, enables trapping if the argument is non-zero and disables
trapping if the argument is a 0. If trapping is ACTIVE and OFF, or if it
is INACTIVE and ON then the following actions are carried out:

The VM(M) Virtual Machine 231

1 -> QTRACTIVE,
restore the top object to the top of the link stack,
unconditionally execute the next instruction.

This reactivates trapping after the return from the procedure which was
called by the DO operation. Thus, the use of trapping follows these rules:

1. The text which is entered by the DO operator is terminated by a
reference to TRAP, with the stack as it was on entry, to cause execution
of the intercepted instruction.

2. Trapping is turned on by a reference to TRAP(address).
3. Trapping is turned off by a reference to TRAP(0).

This mechanism minimizes the amount of logic required within the inter-
preter and allows flexibility of programming of the trapping logic within
the MINT system itself.

Uses of TRAP may include instruction usage counts, trapping of in-
struction or VSTORE references, or any other instruction execution based
analysis or control.

13.5.13.7 The EMULATE Primitive

The EMULATE primitive provides the means of replacing current primi-
tives, or implementing new primitives, using MINT text. Any of the opera-
tion codes between zero and 79 may be emulated. EMULATE operates on
the VM instruction table so that, for the emulated operation code, control
comes into the emulation code in the VM instead of going to the specific
instruction processing in the VM. The emulation code determines the ap-
propriate action to perform as described below. Two data structures are
relevant to the emulation logic. The first is the VM instruction transfer (or
jump) table.The second is a table of emulation transfer addresses. Each
entry in the instruction transfer table must contain three fields: a field
containing the index into the emulation table, a field which indicates if
emulation is active, and the transfer address field. The emulation transfer
table entries contain two fields: the address of the MINT procedure which
will execute the emulation and a field containing the normal transfer ad-
dress copied from the instruction transfer table. This address is saved in
the execution table so that it may be restored in the instruction transfer

232

Machine-Independent Organic Software Tools

table when emulation is terminated.

There are two components to the emulation logic. The first is the
processing due to execution of the emulation operation code (80). The
second is a procedure that is entered due to the fact that its address is
set in the instruction transfer table. This second procedure provides the
control transfer for the actual emulation.

The EMULATE operator expects two arguments on the operand stack:

e An operation code,

e A procedure address.

The processing due to execution of the emulation operator is divided into
three cases:

1. Procedure address is greater than zero and emulation of this
operation code is not currently set. In this case the following
steps are required:

Locate a free entry in the emulation table. Store the index of this
entry into the index field of the entry in the instruction transfer
table for this operation code. This causes emulation action to be
set for this operation code.

Save the address contained in the transfer field of the instruction
transfer table entry in the save field of the emulation table entry.

Store the address provided on the stack into the emulation table
entry transfer address field.

Store the address of the emulation control routine into the transfer
address field of the instruction transfer table entry.

Ensure that the stack pointer reflects the use of two arguments
and continue instruction processing.

2. Procedure address is greater than zero and emulation for this
operation is active. In this case emulation of this operation code is
marked inactive and control is returned to the address provided as the
parameter.

3. Procedure address is zero. This case is used to terminate emulation
of the given operation code. The flag and index fields in the instruction
transfer table are cleared. The saved transfer address is copied from
the emulation table to the instruction transfer table. The emulation
table entry is marked as available.

Control comes to the emulation control routine when an operation code is

The VM(M) Virtual Machine 233

encountered which has had the address in the instruction transfer table set
to point to the control routine.The control routine first tests if emulation
is already active for this operation code. If this is the case the original
transfer address is obtained from the save field in the emulation table and
control is transferred to that address. If emulation is not active the active
flag is set, the current value on the link stack is copied to the operand stack
(the value is popped from the link stack, and is pushed onto the operand
stack), and the address of the emulation procedure (which is stored in the
emulation table) is pushed onto the link stack. Then, normal processing is
resumed, which will cause the next instruction to be taken from the start
of the emulation routine.

This form of control transfer allows emulation to operate without dis-
turbing the link stack or operand stack, and all data are available to the
emulation procedure so that it can recover the location of the emulated
instruction, can manipulate data on the operand stack, and can reference
other procedures.

13.5.13.8 VMDEBUG

The primitive, VMDEBUG, is available to control Virtual machine debug
mode. VMDEBUG pops the stack and stores the value in an internal reg-
ister which determines VM debug mode. If the register is 0 debugging is
turned off, and the VM runs at full-speed. If the register is non-zero VM de-
bugging is turned on and, currently, the VM speed is about 1/2 the normal
speed. With debugging on the following actions are taken:

1. Address values are checked for the range 80 < address < MAXVS-
TORE.

2. Instruction values and the current top of stack are pushed into a cir-
cular list. In the event of an abnormal condition, the list is displayed
and is written to the file: mint-tr.trc.

The option of attempting restart is available after an abnormal stop.
On restart, normal entry to the compiler is taken. Of course, this may not
always provide useful results.

13.6 Summary of Virtual Machine Primitives

The following Table provides a summary of all Virtual Machine primitives,
and their numeric operation codes. The numeric codes are needed to inter-
pret object format MINT code.

234 Machine-Independent Organic Software Tools

Table 13-5. Virtual Machine Primitives

numeric instruction numeric instruction
code code

0 Illegal 30 YES

1 GET 31 NO

2 GETV 32 GO

3 VAL 33 DO

4 - > 34 ENTRY

5 DUP 35 EXIT

6 LOSE 36 GETCH

7 GLKP 37 PUTCH

8 SLKP 38 INCH

9 + 39 OPCH, SEGIO
10 - 40 MATCH
11 * 41 DICMATCH
12 / 42 STOP

13 NEG 43 PDUMP
14 FROM 44 TIME

15 MASK 45 OPENF
16 UNION 46 Illegal

17 DIFFER 47 CLOSEF
18 COMPL 48 EXR

19 EQ 49 TRAP

20 NE 50 <=>

21 LT 51 TRUE

22 GT 52 FALSE

23 LE 53 ADV

24 GE 54 ESTOP
25 NOT 55 ADIFF

26 AND 56 - >

27 OR 57 < ——

28 XOR 58 VMDEBUG
29 CHOOSE Illegal

80 EMULATE

14. The Distributed MINT System

14.1 Introduction

This Chapter is intended as a guide to the implementation of MINT sys-
tems. It discusses the text files that comprise the distributed system. These
are:

e Object text file of Virtual Machine diagnostics
e Object text file of MINT auto-compiler
e Source text files of:
- compiler common routines
- compiler main text
- auto-compiler routines
- Virtual Machine diagnostics
- trace (T$) routines
- identifier display (LV$) routine
- syntax analysis (M-TRAN) routine
- instruction analysis (TRMIX) routines
- text editing routines
- character reversal (REVSTR) routine
- file management routines
e Listing of compiler
e Listing of diagnostics

e Other documentation

There is also a PDUMP format file, MCOMP.PDM, of the compiler. At
this point it is a good idea to run the diagnostics.

236 Machine-Independent Organic Software Tools

It is assumed that a Virtual Machine has been implemented as de-
scribed in Chapter 13.

14.2 Virtual Machine Diagnostics

The Virtual Machine diagnostic is a stand-alone MINT program designed
to exhaustively test a Virtual Machine implementation. The object file is
stand-alone in that it can be executed independently of any other proce-
dures. It is quite compact, as only the test routines are included. None
of the normal compiler facilities are needed or available. The object-text
format is as described in Section 13.3. It should be loaded and initiated by:

mint -f MINTDGPF

An error-free execution will produce output as shown below:

N O WN e O

00

VM(M) diagnostics pass one completed.
GET

GETV
VAL
STORE
DUP

LOSE
EXCHANGE
ADV

ADD

SUB

MUL

DIV

- Remainder
NEG

FROM
ADIFF
MASK
UNION
DIFFER
COMPL
NOT

EQ

NE

LT

GT

LE

The Distributed MINT System 237

GE
AND
XO0R
RIGHT-SHIFT
LEFT-SHIFT
OR
CHOOSE
YES
NO
TRUE
FALSE
GO
DO
- nested references
GLKP, SLKP
MATCH
- character
- pointer
- 0dd, even, offset strings
DICMATCH
- string
- single character
- pointer
Type a line of text to be echoed by INCH.
This is a test line for INCH.

Check for correct echo.
VM(M) diagnostics completed.
ESTOP instruction executed. Diagnostics follow.

The diagnostics operate in two phases. The first phase briefly validates
the operation of each instruction required to perform the phase two tests.
As each stage of phase one completes successfully a single digit is printed.
Failure to print a digit indicates failure of that step. The tests in each step
are as follows:

0

0O Ui Wi

initial test of the operation of GET, GO, OPCH
and function referencing
tests the operation of GO
tests the operation of NE and NO on a supposed false
tests the operation of NE and NO on a supposed true
tests the operation of GETV
tests the operation of ->
tests the operation of VAL
tests function referencing
tests the operation of GETCH

If the digit 0 fails to be printed on loading the diagnostics, the instruc-
tions GET, GO, and OPCH should be investigated; if these appear to be

238 Machine-Independent Organic Software Tools

correct, the portable-format load routine or the operation of the Virtual
Machine main instruction loop should be suspected. The second phase of
the diagnostics exhaustively tests all the instructions in the Virtual Ma-
chine. Before each instruction is tested its name is printed. Any subsequent
diagnostics refer to the last printed instruction. Each instruction is tested
many times with different operands. For each execution the obtained result
is tested. If it is incorrect the diagnostic:

Kokkok failed kokkok

is printed. In addition, the status of the operand stack is tested to verify
that the correct number of objects have been removed or returned. If an
error occurs in the operand stack logic the diagnostic:

Kokkok Kokkok

stack exception

is printed. The diagnostic routine attempts to continue processing after an
error so that multiple errors may be detected. However, errors may propa-
gate since the diagnostics tend to assume that previously tested instructions
are operating correctly.

14.3 The Compiler Object File

Once the Virtual Machine diagnostics have been executed successfully the
compiler object file itself may be loaded using;:

mint -f MINTPFA

The compiler should sign-on with the message:

MINT-3 Virtual Machine (32-bit Virtual Memory): Version 1.2.3
VSTORE size 16384K words. Start PF load..............:

MINT-3 System: Version 3.0. Created on: 060714

Copyright D.F. Hendry, 1990, 2004

VM>

At this point the compiler is ready for source input.

It may be necessary to adjust the size of the system to fit a particu-
lar implementation. Two parameters govern the amount of the compiler’s
working area. These are the maximum address of data-space (MAXDS$)
and the maximum address of procedure-space (MAXPS$). These two val-
ues are computed and set by the AUTO directive (See Section 14.6.1.1).

The Distributed MINT System 239

They are used by the compiler to initialize VSTORE pointers. Since these
variables occupy locations 1 and 2 of VSTORE they occur at the begin-
ning of portable-format object-text. The current values of these variables
in distributed compiler and auto-compiler systems is 256 for MAXDS$ and
256 for MAXPS$. These values may need to be changed to fit particular
configuration requirements. It is not simple to change the portable-format
text due to the need to recompute the image checksum value. The simplest
approach is to set the required values at the end of the VSTORE load pro-
cess. Table 1-1 shows the amounts of VSTORE required for the standard
system. This may be used as a guide in determining the appropriate values
for a particular system. Note that if it is intended to be able to recompile
the compiler and auto-compiler somewhat more than twice the space shown
in Table 1-1 will be required as the auto-compiler and the new copy of the
compiler must fit in VSTORE at once.

14.4 Additional Source Text Files

The system is distributed with a set of source files which may be optionally
included into the system as needed. These files are described elsewhere and
are itemized at the beginning of this Chapter.

14.5 Character Order Reversal in Strings

The directive REVSTR is available for carrying out the character order
reversal which may be required if portable-format text is to be moved
between implementations which differ in character order within VM words.

14.6 Compiler Creation and Source Structure

The MINT compiler is written in MINT and can be generated by the
compiler. The compiler must be in AUTO mode to compile itself. AUTO
mode is set by a reference to the AUTO directive. A compiler which in-
cludes the AUTO directive, and supporting routines, is referred to as an
auto-compiler. The auto-compiler creates an output file which is an object
version of the new compiler. This new compiler can be loaded under any
MINT system. When the compiler is in AUTO mode additional facilities
are available to provide relocation of address values and to provide object-
text output. A single set of source modules is used to create all versions of
the compiler.

240 Machine-Independent Organic Software Tools

14.6.1 Auto-compiler Directives

14.6.1.1 The AUTO Directive

The AUTO directive creates and initializes the necessary tables and object
text so that all subsequently compiled text becomes a part of the system to
be created. As part of this initialization, object text is executed which pre-
vents any subsequently introduced directives or macros from being called
upon. Thus, if any directives are to be obeyed during the compilation they
must be introduced prior to the execution of the AUTO directive. The
AUTO directive also insures that the label SYSSTART has been intro-
duced, but not yet set. At the completion of the compilation this label is
set to the start address of the new system. The AUTO directive obtains
SIUNIT and then resets SITUNIT to zero. It then reads three images. The
first image should contain the intended value of Ny and the second the
intended value of N,. (See Figure 1-2 and Section 14.3 concerning these
values.) The third image should contain the identification of the output as
a string. After this input has been read SIUNIT is reset to its value which
was obtained on entry to AUTO.

The AUTO directive may be used to create any new, self-contained,
program. For example, AUTO is used to create the VM diagnostics in
portable-format object text form. This is accomplished using the sequence:

MACRO ASUBS:’SI MINTAUTO’
MACRO PFOUT:’SI MINTPFOT’
UNLOCK INTDIC
DICT DIAGD:HDICT

ASUBS
PO MINTDGPF.NEW
AUTO

32768

3000

Diag

SI MINTDIAG
GENPF,

This text is included in the source files as CDIAG.

14.6.1.2 The PO Directive

The PO directive is defined in the auto-compiler in a manner similar to the
standard SO directive. The supplied IPAR-expression for the PO directive
is the file name to which the generated object text is written in portable

The Distributed MINT System 241

format. Only text generated after the AUTO directive is written. If a new
compiler is generated (using GENSYS) the label PROGEND provides the
end address for the text output.

14.6.2 Compiler Source Structure

The compiler and auto-compiler source text have been organized into sev-
eral modules or elements, each of which is briefly described below.

14.6.2.1 The MINTSYS module

The MINTSYS module is the main source module for the creation of the
compiler system. It carries out the following functional steps:

NS e W

*x

It inserts the module MINTCNF which defines the specific modules to
be used in building the system.

It unlocks INTDIC.

It references ASUBS which inserts MINTAUTO.
It uses PO to set the output file name.

It references the AUTO directive.

It sets the system start addresses, and version.

It references the macros IOSBS, SUBS, COMP, and ODIR, which in-
sert the compiler source files.

It declares PROGEND to set the end of the complied code.

9. Finally, it references GENSYS to create the new system.

The following shows the MINTSYS module as used in the current (3.0)
implementation:

SI MINTCNF
PAGE
UNLOCK INTDIC
ASUBS
PO MINTPFA.NEW
AUTO
32768
32768
3.0
PROG
FN SYSSTART , SYSSTART,
I0SBS
PAGE

242 Machine-Independent Organic Software Tools

SUBS
COMP
ODIR
PROGEND: , FORGET PROGEND,
GENSYS

14.6.2.2 The MINTCNF module

The MINTCNF module defines the locations of other compiler source mod-
ules by defining the macros IOSBS, SUBS, COMP, PRIM, ODIR, and
ASUBS. These macros appear in MINTSYS.

The following shows the MINTCNF module:

Create MINT compiler system
Standard MINT elements

MACRO IOSBS: ’ °

MACRO SUBS: ’SI MINTSUBS
MACRO COMP: ’SI MINTCOMP
MACRO ASUBS: ’SI MINTAUTO
MACRO PFOUT: ’SI MINTPFOT

>
>
>
)

System dependent elements

MACRO PRIM: ’SI MINTOPRM °
MACRO ODIR: ’SI MINTODIR °’ .

14.6.2.3 The IOSBS Macro

The IOSBS macro is used to introduce functions referenced by subsequent
modules which normally are expected to be primitives. Thus, for example,
if OPENF is provided as a MINT function, it can be introduced in IOSBS
and then referenced subsequently in the compilation process.

14.6.2.4 The SUBS Macro

The macro SUBS inserts the file MINTSUBS, using the SI directive (See
Section 10.5.1). MINTSUBS contains all the general purpose functions
which are of use in generating any system.

14.6.2.5 The COMP Macro

The macro COMP inserts the file MINTCOMP. MINTCOMP contains the
text for the main body of the compiler. COMP also references the PRIM
macro.

The Distributed MINT System 243

14.6.2.6 The PRIM Macro

The macro PRIM inserts the file MINTPRIM which contains all optional
primitives. The basic set of primitives are defined in MINTCOMP.

14.6.2.7 The ODIR Macro

Directives such as T$ or LV$ which are optional, or other directives which
may be implementation dependent, may be defined in the file inserted by
ODIR. In addition, functions introduced in IOSBS can be defined in ODIR.

14.6.2.8 The ASUBS Macro

The ASUBS macro inserts the file MINTAUTO which contains the proce-
dures required for an auto-compilation. MINTAUTO contains a reference
to PFOUT.

14.6.2.9 The PFOUT Macro

The PFOUT macro inserts the file PFOUTPUT which contains the text
required to write contents of VSTORE to an external segment in portable
format.

14.7 System Generation Sequences

Using the C implementation as an example, the following sequence will
create a new compiler in portable format in the file MINTPFA.NEW:

mint

SO MINTALOG.NEW

TITLE(66,1,’Compilation of MINT Compiler ’), LOCS
SI MINTSYS

OBREAK

STOP!

This new compiler can be written in PDUMP format by:
mint -f MINTPFA.NEW

CDUMP °MCOMP.PDM’ 32768
STOP!

If this new MCOMP.PDM is in the MINT home directory the next mint
command will load it. Or, it may be loaded by:

mint -f MCOMP.PDM

15. The C Implementation

15.1 Introduction

This implementation is the “reference” implementation of the MINT Vir-
tual Machine. It is written in portable C and should compile and run on
any ANSI-C compliant system. Minor changes may be needed to the make-
file used for compilation to define the name of the compiler, for example.
Makefiles for Linux (makefile.gcc), OSX (makefile.osx), and a few other
systems are provided. The system has been tested on current Linux plat-
forms, OSX, and OS/2. For other systems, a few changes to definitions
in mdefs.h or simple changes in the makefile may be required. For most
applications the C virtual machine should provide adequate efficiency and
facilities. In some specialized applications, such as embedded systems, an
assembly language coded virtual machine, which may or may not require
an operating system, may be appropriate.

Only the Virtual Machine is written in C. Everything else is written in
MINT and becomes operational as soon as the Virtual Machine has been
compiled correctly. The MINT-coded diagnostics provide a thorough test
of the Virtual Machine to ensure that it is correct. If the C source is used
without changes, the only reason for the diagnostics to fail is a problem
with the compiler used, options given to the compiler, or an error in the
runtime libraries. The source language for the system is arranged in nine
files. These are:

Name Content

mmain.c Main program

mvm.c VM instruction interpreter and all VM
instructions except the I/O instructions

mio.c VM /0 instructions and I/O interface code

mload.c Portable and PDUMP format loader

mutil.c Miscellaneous procedures

mdefs.h Configuration parameters and definitions

proto.h Procedure prototypes

mtext.h Global declarations

mvars.h Data structures

246 Machine-Independent Organic Software Tools

15.2 VM Components

The resources and processing requirements for the VM are available in C
and its usual supporting Operating Systems, such as Linux. The VM makes
use of stream input/output procedures for I/O, and malloc() to acquire the
VM virtual memory space. This simple design makes it easy to port the
VM to practically any system.

15.2.1 Storage

The MINT VSTORE is allocated by means of a single malloc() system
call. The amount of memory requested is configurable at compile-time.
Nearly all systems now provide malloc() in the form that the memory
requested is not physically allocated until used. For this reason the default
initial memory request is large. If this causes a problem, the default can be
reduced.

15.2.2 Stacks

The stacks are implemented as (the current default size is 100 words) blocks
of storage. Stack space for both stacks is obtained using malloc(). The value
returned by malloc() is used as the stack pointer for each stack. The current
default size is 100 words for each stack. The current implementation checks
for stack underflow or overflow. If the operand stack overflows, additional
space is obtained by use of realloc(). Link stack overflow or a NULL return
from realloc() causes the VM to exit.

15.2.3 I/O Management

The two main tasks of the I/O Management section are to provide string
format conversion, and to manage the file I/O interface.

15.2.4 The Basic Interpreter

The basic interpreter has two main components, the code for instruction
fetch and decode, and the code for each instruction. When the Virtual
Machine is started, memory is allocated, MINT code is read into VSTORE,
and control is transferred to the beginning of the instruction fetch and
decode loop. This code first tests for special instruction trap mode handling.
If this is required, the trap code is entered. Otherwise, the value of the
instruction which is pointed to by the current top of link stack register is

The C Implementation of VM (M) 247

obtained and executed. If the current instruction value is greater than 80,
it is treated as a procedure address and an implied DO is performed. If
the value is less than or equal to 80 a case statement executes the correct
VM(M) instruction. When each instruction is completed, a jump is taken
to the start of the instruction loop. This processing continues until either a
STOP is encountered, or until an end-of-file condition is found on stream
stdin.

Due to the ambiguous nature of C syntax and semantics, there is a
compile-time parameter which controls compilation of the virtual machine
instruction processing code. This parameter (NDPC) selects the use of
expressions which are efficient but which depend on “reasonable” ordering
of subexpression evaluation. Normally, this parameter is not defined, and
separate expressions are used to force correct order of evaluation. If NDPC
is defined it is important to run the VM diagnostics to determine if your
compiler has compiled working code.

15.2.5 VSTORE Addressing

VSTORE addressing is quite simple as there are very few points at which
the VM(M) Virtual Machine actually makes VSTORE references. There
are five storage access primitives: GET, GETV, VAL, ->, and ADV. In
addition, each of the six string primitives makes references to VSTORE.
The loader stores into VSTORE when either portable or PDUMP format
data are loaded. Finally, the main instruction loop references VSTORE in
order to obtain each instruction.

15.2.5.1 The Portable Format Loader

The Portable Format Loader carries out two functions. It loads VSTORE
from a portable format source file, and it then sets required values in low
VSTORE. Portable format, and the portable format load process are de-
scribed in Sections 13.3 and 13.4. The values which must be set in low
VSTORE are given in Table 13-1. The portable format loader expects its
input to be in the file which was named on the command line.

15.2.5.2 The PDUMP Loader

The PDUMP load routine uses a header containing the operand and link
stack sizes and contents as written by the CDUMP routine. A version field
is written at the beginning of the PDUMP file in order to permit updates
to the file format while retaining the ability to read old files.

248 Machine-Independent Organic Software Tools

15.2.6 Primary I/O Interface

The primary I/O (stdin, stdout) interface is quite simple. When an INCH
instruction is executed referencing segment zero and no input has been read
a readline() call is used to obtain the next line of text and the first character
is returned. On each subsequent INCH the next character is returned until
the end of line. Then a new line is read by readline().

Use of readline() permits editing of the input line and provides the
other readline features such as input history. The history file is saved in
the user home directory as .mint_hist and is read in when mint is executed
so that previous line history is available.

In case the readline library is not available, the VM can be configured
to use getchar().

OPCH with a segment index zero causes characters to be written to
stdout using fputc().

15.2.7 File I/0O Interface

The file I/O interface provides access to files in the operating system’s
native file system. The description below is for Linux-like systems. It is a
simple matter to provide similar facilities using other operating systems.

15.2.7.1 Sequential Input File Open

A sequential input file is opened by a reference to fopen() with an mode
of “r” and a string argument which is the filename passed by the MINT
code. If this fopen() fails, an fopen() using “w+” is attempted. If that fails
a new filename is requested from the user.

15.2.7.2 Sequential Output File Open

Sequential output files are opened by a reference to fopen() with mode
“w+” and string argument which names the file to be opened. Note that if
the file previously existed, this operation deletes any contents.

15.2.7.3 File Reading and Writing

The file interface for the INCH and OPCH functions uses the same string
conversion routines as used for the primary I/O interface. For reading
(INCH), fgetc() is used to obtain the next sequential character. Compo-

The C Implementation of VM (M) 249

sition of the characters into MINT strings takes place within MINT. For
writing (OPCH), fpute() is used.

15.2.8 Diagnostic Services

There are three main areas of diagnostic checking within the Virtual Ma-
chine implementation. These are stack checking, VSTORE address bounds
checking, and the illegal VM (M) instruction trap. In addition, System sig-
naled errors are processed by the Virtual Machine so that relevant Virtual
Machine state information may be printed before Virtual Machine termina-
tion. There is a standard error termination display of the Virtual Machine
state. This display prints the locations in VSTORE of the last 20 executed
instructions, contents of the current operand stack, and the contents of the
current link stack. This display is normally preceded by a specific diagnostic
message which depends on the error condition.

15.2.8.1 Stack Checking

The standard stack checking is link stack underflow and overflow check.
This check prevents stack errors from corrupting other data, and it is rel-
atively inexpensive to check.

However, the system may easily be configured with this checking dis-
abled.

15.2.8.2 VSTORE Bounds Check

The DO and GO primitives and the implied DO mechanism contain a test
for whether the current maximum value for a VSTORE address is exceeded.
Since within the interpreter relative VSTORE addressing is used, it is very
unlikely that an address below the start of VSTORE could be generated.

15.2.8.3 Illegal Instruction Trap

The instruction transfer vector is 81 words long. The entries which have
index values which do not represent a valid VM(M) instruction contain
a transfer to the illegal instruction trap routine. This routine prints the
VSTORE address of the illegal instruction and then transfers to the general
error termination display routine.

250 Machine-Independent Organic Software Tools

15.3 Operation of the VM

The operation of MINT involves three steps: initiation of the Virtual Ma-
chine environment, loading of VSTORE, and Virtual-Machine instruction
interpretation. The system is organized so that instruction interpretation is
automatically started after VSTORE is loaded. One environment variable,
MINT_HOME, is looked for when the VM is initialized. The path given by
this variable is used to locate compiler or other text to be loaded by the
VM.

15.3.1 Executing the Virtual Machine

The program which realizes the VM(M) Virtual Machine is an executable
file named mint. This program is invoked by:

mint <options> <string>

where the options are:

-f “string” — string is a PDUMP-format or Portable-format
file to be loaded into the VM

-i “string” - string is passed to MINT as first input line

-v — verbose signon: includes file load path and VM
information

If no options are used, the file MCOMP.PDM is loaded from the MINT
home directory given by the environment variable MINT _HOME.

15.3.2 Loading Virtual Memory

When the VM processor is executed, the first operation is to load Virtual
Store with an executable MINT program. This executable program may be
in one of two formats:

e Portable format
e Compressed core image (PDUMP) format.

PDUMP format loads more quickly, but is implementation dependent.
Portable format can be loaded by any VM implementation. Portable for-
mat is described in Section 13.3. PDUMP-format files are created by means
of the PDUMP primitive.

Normally, the system files are located in the subdirectory “mint3”
in the source distribution. The Virtual machine loader uses the environ-
ment variable MINT_HOME to locate the MINT system files. This vari-

The C Implementation of VM (M) 251

able should contain the path to the “mint3” directory in the distribution,
or another directory where the MINT files have been put.

15.3.2.1 Compiler Source Input

When the compiler is loaded it responds with the message

MINT-3 Virtual Machine (32-bit Virtual Memory): Version V.L
The VM then loads VSTORE from a file. If the compiler is loaded it prints:

MINT-3 System: Version VV.LL. Created on: yymmdd

where VV.LL is the current version and level of the MINT compiler. At this
point the system is ready for input from the primary input source. Input
may be read from a file by means of the SI compiler directive. Input is
directed back to the previous input stream on encountering an end-of-file.

15.3.2.2 Compiler Output

Listing output from the compiler, and any output from the user program
using any of the string output functions described in Chapter 10 is nor-
mally directed to the primary output stream (e.g. a terminal window). This
output may be redirected to a file by means of the SO directive. Output
may be directed back to the primary stream by means of the OBREAK
directive.

15.3.3 Upper/lower Case Convention

The MINT system distinguishes between upper and lower case in all con-
texts. All compiler primitives, directives, and functions are defined in upper
case.

15.3.4 Use of CDUMP and PDUMP

The PDUMP primitive creates a PDUMP-format copy of the entire Virtual
Store. This is useful for saving parts of a program that have already been
debugged to avoid the need to recompile them. For example, suppose a
program is made up of files prog-1, prog-2, and prog-3, and that all the
routines in prog_1 and prog_2 have been checked out. They can be saved
in compiled form by

mint

252 Machine-Independent Organic Software Tools

SI prog_1
SI prog-2
NOW PDUMP(’prog.ok’) !

The file name must be enclosed in quotes. Subsequently,

mint prog.ok

will load the compiler together with the compiled files prog_1 and prog_2.
Execution will be restarted at the point of the PDUMP. At this point
prog_3 may be compiled by:

SI prog-3

PDUMP is used in situations, as above, in which it is intended to
resume processing at the current point after reloading the PDUMP image.
However, it should be noted that the sequence:

NOW PDUMP(’prog.ok’) !

has the effect that a dictionary is pushed onto the dictionary stack by
the NOW directive. This dictionary is popped from the stack by !. If it
is intended to have the PDUMP’ed text start at some other address, the
CDUMP directive should be used to avoid leaving a dictionary entry on
the stack. For example, a new PDUMP format copy of the compiler is
generated by:

CDUMP "MCOMP.PDM’ 32768

This text sets the start address to 32768 and uses PDUMP to write VS-
TORE to the file MCOMP.PDM.

15.3.5 Example Program Compilation and Execution

The following is an example use of the MINT VM diagnostic system. The
diagnostic routine is an entirely standard MINT source program.

mint . line 1
LIST . line 2
DICT DIAGD:HDICT . line 3
SI MINTDIAG . line 4
BDIAG . line 5

This sequence carries out the following: line 1 starts the MINT VM which
loads and starts the MINT compiler; line 2 sets source listing mode on,
(if you are in a hurry or using a slow terminal you may want to skip

The C Implementation of VM (M) 253

this line); line 3 introduces the dictionary DIAGD which is used by the
diagnostic code; line 4 causes reading of the MINT diagnostic source text;
line 5 causes MINT to start execution of the diagnostics. This should result
in the output sequence shown in Section 14.2. In order to generate a new
diagnostic file in portable format see the text in the file CDIAG.

15.3.6 The VM source Code

The C code for the MINT VM is quite simple. Changes to best match
individual configuration needs can be made easily. We do not recommend
changes to the code for the machine instruction loop or the machine instruc-
tions themselves. If such changes are made, the MINT diagnostics should
be run to verify that no change has been made to the VM operation.

History of Corrections and Changes

1. The Mint Compiler

This Section provides a chronological record of changes to the compiler
since the original 3.0 version.

1.1 14 January 2004: GETSTR Correction

The version has not been changed. The original version 3.0 was created on
020216, as shown in the signon line. This version has creation date 040113.

This is the first modification of the compiler since version 3 was devel-
oped. The change was to correct the omission of length checking in GET-
STR. As described in the book, and as previously, GETSTR uses 34 word
blocks for composition of the input strings and allocates a new block if the
current one fills up. This occurs for each 132 characters of input. When
GETSTR was rewritten to use the MINT 3 string format, the length test
was omitted.

1.2 10 July 2004: Change to OPNL

Modified OPNL so that it updates the line count (RLNO) if PGLNGTH
is non-zero. This eliminates the need for OPNLL as a compiler-internal
function. This also improves the use of TITLE for pagination. The fact that
OPNL did not update RLNO was noticed when adjusting the formatting
of MTOC.

1.3 9 July 2006: Correction to 7, CURDIC, and introduction of
MAXVS$

The directives ? and CURDIC did not return information about the
active dictionary. They always returned information about the first direc-
tory in the directory list. This has been corrected. The VAR MAXVS$ has
been introduced in order to provide the total size of VSTORE. VSTORE
has been set to a large value (now 16M VSTORE words) for quite a while.
The size is determined in the VM. The actual size acquired in the VM is

256 Machine-Independent Organic Software Tools

now set in the variable MAXVS$, which is in low VSTORE. The value
is in units of 1024 words. A directive, VSTOREMAP, has been added to
provide a convenient display of the layout and usage of VSTORE.

2. The C-coded Reference VM

This Section provides a chronological record of changes to the C-coded
reference VM interpreter since the 1.1 version.

2.1 14 January 2004: Dynamic Operand Stack

The version is now 1.2.

Since the beginning, MINT has used fixed-size operand and link stacks.
If it was found that the stack size was too small, the VM was recompiled
with a larger stack. However, it was also true that the PDUMP format
assumed the stack size in the current VM. Thus, if the stack size was
changed, old PDUMP files would no longer load correctly.

The VM has been changed so that it dynamically allocates the stacks
and the operand stack is automatically expanded if it fills up. The PDUMP
format has been changed to contain the sizes of the stacks so that the
PDUMP load routine will correctly load files with stacks of any size. The
version level of the PDUMP format has been incremented to version 2 to
distinguish this change. The PDUMP load routine will load both old and
new version files.

2.2 15 August 2004: Correct addressing above 23!

The version is now 1.2.1

Corrected vm-c for VM addresses above 23!. A number of variables
were long which should have been unsigned long. In particular, PDUMP
would not write correctly if the VSTORE end address was above 23!, Ex-
periments with Ulysses found this problem.

Also made improvements to diagnostic output. These include better
formatting, handling of “segmentation faults,” and correct value of program
counter in dumps.

Appendix: History of Corrections and Changes 257

2.3 9 July 2006: Introduction of MAXVS$

The VM now sets the VAR MAXVS$ to the size of VSTORE (in units of
1024 VSTORE words.

2.4 19 September 2006: x86_64 and PDUMP Load

The version is now 1.2.3

The VM compiles and executes correctly on 64-bit systems, but in
32-bit mode. In addition, an architecture “endedness” test is now used to
reorder integers during PDUMP load. This means that separate PDUMP
files are not needed for big-end and little-end systems.

2.5 20 December 2015: Edits to the VM and one Manual update

These changes were made to allow compilation on Linux and Mac systems
using clang and using the options -m32 and -m64. At present both -m32
and -m64 work correctly under Linux, but only -m32 (with #define x64_
set) functions under the current version (ver. 10.11.2) of the Mac OS. The
code compiles using -m64 but it is not correct. No functional changes were
made, but the version number was incremented to 1.2.4. Figure 13-10 was
corrected. The text describing the Figure (for SLKP) was correct. The
current VM code is in vm64-c.

Subject Index

I, 13, 14, 105 ADD, 155
$, 134 Addition, 155
$$, 146 ADIFF, 32, 60, 197
x, 191 ADV, 73, 75, 177, 178, 234, 247
—, 191 ADVCH, 100, 134
', 32, 33, 109 AND, 59, 196, 201, 234
(, 109 ANSI, 7, 10, 21, 127
(), 58, 92 Apple-II, 1
), 109 ASUBS, 243
* 57,61, 62, 191, 234 Attributes
+, 14, 22, 57, 61, 62, 93, 156, 191, Class, 16
197, 234 AUTO, 172, 239, 240
,, 109 Auto-compiler, 235, 239, 240
-, 30, 57, 67, 191, 197, 234
., 38, 109 B-tree, 123
.mint_hist, 248 BACK, 71, 83
/, 57,102, 191, 192, 234 Backus Naur Form, 143
//, 144 Backward, 71
:, 23, 25, 109 BASE, 139
5y 33, 134 Binding, 58, 60
;13, 23 BINLOC, 100
;CR, 23 blank, 23
=, 77, 144 BLANKS, 100, 133
7,108, 109 BLOCK, 28, 34, 48, 109
@, 55, 75, 109 BNF, 143
[], 96 Bound, 60
#, 31, 109 Brackets, 96
&, 32, 94, 109 BTDEL, 100, 124
-=>,199, 234 BTINIT, 100, 123
=> 73,75, 177, 178, 247 BTINSRT, 100, 124
<--, 199, 234 BTREM, 100, 125
<=> 184, 234
-> 234 C, 12, 245
CAP, 128, 132, 136, 216, 219
Action carriage-return, 23
Assignment, 17, 20 CDUMP, 87, 109, 229, 247, 251
Generative, 17 Changes, 255

Syntax, 16 CHAR, 100, 134, 135

260 Subject Index

Character Address Pair, 128
Character case, 251
Character constant (#), 31
CHOOSE, 79, 204, 234
CLASS, 16, 106, 143

CLASS, 17, 20

DICT, 17, 20

DIR, 18, 20

FN, 18, 20

ICON, 19, 20

LAB, 19, 20

MACRO, 19, 20

PRIM, 18, 20

VAR, 19, 20
Classes, 22
CLEARLST, 118
CLOSEF, 139, 223, 234
colon, 23
Colon(:), 25
Comma, 14, 62, 64, 66, 105, 148
Comment, 38
COMP, 241, 242
Compactness, 8
COMPILE, 100, 141
COMPL, 58, 191, 196, 201, 234
Conditional Execution, 80
Conditional transfer, 79
Constant, 19, 29

Address, 31

Character, 31

Evaluated, 32

Integer, 29

String, 32
CONTS$, 172
Control Transfer, 78, 204
Corrections, 255
CURCHS, 131, 132
CURCOL, 131-134
CURDIC, 108, 109

D$, 99, 104, 106, 109, 110
DATA, 20, 55, 109
Data-space, 9, 20, 25, 37, 55

DATE, 172

DECMP, 99, 100

Decompile, 106

DETACHED, 100, 114-116, 126

Diagnostics, 33, 236

DICMATCH, 73, 140-142, 216,
219, 234

DICT, 17, 44

Dictionary, 7, 9, 16, 17, 20, 21,
23, 25, 28, 61, 105, 121, 123,
141
Entries, 7

DIFFER, 58, 191, 196, 201, 234

DIGIT, 100, 135, 156

DIR, 18, 103

Directive, 18, 103

Directives
Table of, 109

DLOC, 9, 19, 26, 55, 67, 103, 133,
135

DO, 96, 98, 212, 230, 234

DREM, 172, 192

DUMP, 100, 117, 126

DUP, 76, 156, 184, 234

Editor, 151, 157
ELSE, 81
EMULATE, 229, 231, 234
Emulate, 85
End-of-String Action, 134
ENDBLOCK, 28, 34, 48, 109
ENTRY, 91, 93, 96, 103, 212, 234
EQ, 59, 201, 234
EQV, 25, 109
Escape, 33, 134
ESTOP, 34, 87, 229
EVAL, 12, 155
Evaluated Constant (&), 32
Exception

Arithmetic, 191
Exchange, 76
Execution: Conditional, 80

Subject Index 261

EXIT, 12, 18, 34, 64, 81, 91, 93,
96, 98, 103, 110, 176, 188, 212,
234

EXOPTS, 172

Expression
Address, 60
Arithmetic, 57
Boolean, 59
Object Selection, 79

EXR, 87, 229, 230, 234

FAIL, 146
Failure Mechanism, 146
FALSE, 80, 205, 234
Fast-back, 143
Fixed Addresses, 172
FN, 18, 91
FNAME, 100, 135, 137
FORBTVAL, 100, 125
FORCHS, 118
FOREACH, 100, 117
FORGET, 22, 24, 28, 35, 109
Fortran, 148
Forward, 70
Free-space, 9, 34, 35, 96, 113, 114
Free-Space List, 114
FROM, 32, 60, 76, 197, 234
FULDIC, 108
Function, 18, 91
Anonymous, 96
Identified, 91
Parameters, 91
Reference, 92
Table of, 100

GE, 59, 201, 234

GET, 20, 73, 177, 178, 205, 234,
247

GETCH, 73, 130, 216, 234

GETREC, 121

GETSTR, 100, 130

GETV, 20, 73, 177, 178, 205, 234,
247

GLKP, 98, 188, 234
GO, 78-80, 204, 234, 237
GT, 59, 80, 201, 234

Host, 87
Host machine, 11

ICL$, 29, 46, 109
ICON, 19, 29
Identifier, 7, 21
Introduction, 22
Local, 24
local, 27
Matching, 21
Naming, 23
Removal, 24
Renaming, 24
Setting, 25
IDLOCS, 172
Illegal, 234
Immediate Execution, 105
Immediate Setting, 26
Implicit reference, 212
INCH, 73, 130, 223, 234
INHEX, 133
ININT, 100, 133, 156
INSTRING, 96, 100, 132, 135
Instruction Execution Unit, 177
Instruction Set, 177
Intercept, 84
IOSBS, 241, 242
IPAR, 12, 15, 18, 26, 30-32, 57,
100, 103, 104, 155, 157, 240
TPAR-Expression, 103
IS0, 7, 10, 32, 127
Item Block, 116
Item List, 116
Iteration, 82

JOIN, 100, 114-116, 126

key compare, 123

262 Subject Index

LAB, 19, 23
Label, 19, 23
LASTDIC, 46
LCODE, 38, 67, 89, 109
LE, 59, 201, 234
LETTER, 100, 135
Linux, 12
LIST, 37-39, 67, 89, 109
List
Free-Space, 114
Item, 116
Pointer, 113
Record, 118
Structure, 113
LISTDIC, 109
LISTDICS, 108
Literal, 29
Local, 27
Local Identifiers, 27
LOCK, 29, 46
LOCS, 37, 67, 89, 109
LOSE, 77, 82, 117, 184, 234
LP Register, 176
LT, 59, 201, 234
LV$, 108, 109, 243

M-TRAN, 143

Machine Independence, 4

MACRO, 19, 69

MASK, 58, 191, 196, 201, 234

MATCH, 73, 140-142, 216, 219,
234

MAXDLOC, 55

MAXDSS$, 55, 172, 239

MAXPLOC, 55

MAXPSS, 55, 172, 239

MAXVSS, 56, 172

MINT, 1
Analysis and Diagnostics, 152
Functional Structure, 5
Language Components, 15
Size, 8

MINT_HOME, 250

MINTAUTO, 243
MINTCNEF, 242
MINTCOMP, 242
MINTPRIM, 243
MINTSUBS, 242
MINTSYS, 241

MINUS, 30, 109
Miscellaneous Constructs, 84
MOVE, 99, 100, 126
Multiple Introductions, 22

Ng, 9
Np, 9
NE, 59, 201, 234
NEG, 30, 57, 58, 191, 192, 234
NEXTCH, 100, 134
NEXTFREE, 35, 100, 115, 116
NO, 79, 204, 234
NOCHS, 133
node

leaf, 125

non-terminal, 125

NOLIST, 38, 39, 109

NOT, 59, 201, 234

NOW, 13, 14, 16, 105, 106, 109,
111

NULL, 100

OBJ, 108, 109

Object, 41

Object Selection Expressions, 79

OBREAK, 109, 137, 251

Obtain, 41

ODIR, 243

OPCH, 73, 136, 223, 224, 234,
237, 248

OPENF, 128, 132, 137, 140, 223,
234, 242, 248

Operand stack, 73, 76

Subject Index

Operator
Address, 60, 197
Arithmetic, 57, 191
External, 127
Logical, 59, 201
Relational, 59, 201
Shift, 57, 199
Store, 178
String, 127
OPFF, 100, 139
OPINT, 12, 14, 100, 137, 139,
155, 156
OPINTD, 100, 137
OPNIL, 12, 100, 139, 155
OPTION, 147
OR, 59, 201, 234
Organic
Programming, 6
Structure, 5
Orthogonality, 5
Output, 135
OUTST, 32, 100, 137, 139
Overflow, 34

PAD, 138
PAGE, 38, 103, 109
Parameter

Complex, 94
Parentheses, 14, 65, 148
parentheses, 58
PDUMP, 229, 234, 245, 247, 251
PEND, 144
PHRASE, 143
Phrase, 143, 147
Phrase Element, 144
Phrase Structure, 143
PLOC, 9, 19, 55, 67
PO, 240
Pointer

Link, 176

LP, 176

SP, 176
Pop, 41

263

POPPEDUP, 100, 117, 120
POPUP, 100, 116, 126
POPUPREC, 100, 120
Portable Format, 173
Portable format, 10
Precedence, 60
Precedence Numbers, 64
Precision, 5
PREVDIC, 108, 109
PRIM, 18, 243
Primitive, 15, 18
Primitives
External Interface, 223
Table of, 234
Procedure-space, 9, 20, 25, 34, 37,
54
PROG, 20, 55, 109
Push, 41
PUSHD, 100, 116-118, 126
PUSHDREC, 100, 119
PUTCH, 73, 136, 216, 234

RCLS$, 29, 46, 109
RD-ONLY, 46
READ, 100, 132, 156
Readability, 4
READINP, 100, 132, 134
readline, 248
Record List Pointer, 118
Recursion, 95
REF, 27, 104, 109
Register

LP, 176

SP, 176
RELREC, 121
RENAME, 22, 24, 103, 109
REPEAT, 82, 83
RESERVE, 56, 103, 105, 109, 110
Reset, 34
Reverse Polish, 41
Reverse-Polish, 10, 42, 60, 66
REVSTR, 235, 239

264 Subject Index

SAVBLOCK, 28, 29, 34, 49, 100
SEGIO, 129, 223, 224, 234
Self-Realization, 5
SETBLOCK, 28, 29, 49, 100
SETBSE, 100, 138
SETDIC, 45
SETOPP, 100, 138, 139
Shaw, G. B., 1
Shunt, 20
SI, 109, 131, 242, 251
SIUNIT, 131
Skip, 80
SLKP, 98, 188, 234
SO, 109, 137, 240, 251
SOUNIT, 137
SP Register, 176
Sperry Univac Series 1100, 1
Stack, 41

Link, 98, 176

Operand, 176

Pointer, 176
Stack: Operand, 73, 76
START, 82, 83
States, 54
STOP, 87, 229, 234, 247
Storage Organization, 9
Store Operator, 75
String, 216
String Format, 127
String Match ($$), 146
Subject Index, 259
SUBS, 241, 242
Syntax Analysis, 143
SYSDATS, 172
SYSID$, 172
SYSSTART, 240
System Generation, 243

T$, 84, 107, 109, 110, 230, 243
TEMP, 100

THEN, 81

TIME, 88, 229, 230, 234

TITLE, 38, 109

Top-down, 143

TRACE, 167

TRACTIVE, 230

Transformation, 4

TRAP, 84, 107, 166, 229, 230, 234
TRMIX, 167, 169

TRON, 230

TRUE, 80, 205, 234

Unconditional Transfer, 78
Undefined, 33

Uniformity, 8

UNION, 58, 191, 196, 201, 234
UNLOCK, 29, 46

Unmatched, 34

VAL, 73, 74, 79, 117, 177, 178,
234, 247

VAR, 19

Variable, 19

Virtual Machine, 1, 10
Diagnostics, 236
Loading, 174

Virtual Store, 171

VM, 11

VM(M), 1

VMDEBUG, 233, 234

VSTORE, 9, 31, 67, 73, 74, 84,
87, 98, 99, 107, 127, 157, 171,
177, 178, 188, 197, 223, 229,
246, 247, 249

VSTOREMAP, 56

WHILE, 71, 82, 83
WIDTH, 138

XOR, 59, 201, 234
YES, 79, 204, 234

Zero-Address Architecture, 42

