New Features in MINT-3
M. D. Godfrey

Compiler Level: 3.0

VM version: 1.2
November 12, 2000

Updated: December 26, 2002
May 27, 2003

January 2004

Contents

1.0 Introduction.......... 1

2.0 Dictionariesso 2
2.1 Introduction..........ooiiiiii i 2
2.2 Dictionary Class and Operators................ooviiiiiio... 2
2.3 The Dictionary List ... 6
2.4 Details of Dictionary Manipulation Procedures................ 8
2.5 Compiler Dictionary Manipulation Procedures 10
2.6 Definition of Dictionary Records......................o.oo... 10
2.7 Dictionary and Identifier Displays........................o.... 12
2.8 Use of NOW and PDUMP, 12
2.9 Auto-compilation Facilities i 13

3.0 B-Tree Data Access...........cooiiiiiiiii .. 14
3.1 B-tree Functions.o 14
3.2 FORBTVAL ... e 16
3.3 Data Structures ... 16

4.0 Other New Features................ 17
4.1 Precedence Mechanism (PRIORITY) ...t 17
4.2 Deleting an Ttem List....... ... oo i 17
4.3 Operation on Characters of a String (FORCHS)............... 17
4.4 Input and Output Enhancements 18
4.5 New Features in the Portable 32-bit Virtual Machine.......... 18

1. Introduction

This note describes the main new features of the MINT system since MINT
2.2 as described in the Revised Second Edition of the book. The most
significant changes are the introduction of dictionaries, inclusion of priority
(shunt factor) in the dictionary record (rather than the CLASS record), and
the extension of the system to 32-bit words and use of a large (typically
224 words) virtual address space. Strings are now stored 4 characters per
word.

The new dictionary mechanism is used to improve auto-compilation
of the system. Auto-compilation is now much simpler, more flexible, and
more clearly realized within the standard MINT facilities. One specific
improvement is that the layout and contents of dictionary records may be
changed during auto-compilation in a relatively convenient manner. This
will facilitate further planned developments.

Since the precedence is not declared by the CLASS directive the prece-
dence field has been removed. Thus, CLASS declarations have three instead
of four arguments. All MINT code using CLASS must be changed. It may
also be necessary to include PRIORITY statements to set the precedence
that was declared in the CLASS directive.

These changes and additions have resulted in a reduction of the listing
length of the compiler, including the auto-compilation procedures and the
B-tree functions, from 58 pages to 55 pages.

The new C-coded reference VM makes use of the environment vari-
able MINT_HOME. T When the VM starts execution it normally loads a
PDM-format MINT system from the file MCOMP.PDM. If MINT_HOME
is defined, the VM uses the path defined by MINT_HOME to locate the
file MCOMP.PDM. Otherwise it uses the current directory. The command
option -f can be used to specify another file to be loaded instead.

PDM format is sensitive to the “byte order” of the CPU being used.
However, if the byte-order appears to be incorrect for the CPU architecture

which is in use, the order is reversed during PDUMP reads. The -v option
will indicate what the VM thinks is required during PDUMP load.

2. Dictionaries

2.1 Introduction

The MINT dictionaries provide the information which causes operation of
the entire system. In order to provide control over the currently known sets
of identifiers the identifier records are composed into distinct dictionaries.
These dictionaries are composed into a list. The list of dictionaries may be
manipulated by referencing dictionary names and by procedures which are
described below. New dictionaries are created by the DICT construct. The
operators \ and % may be used to directly reference a named dictionary.
The dictionary list may also be referenced directly by use of the MINT
list operators. Pointers into the list structure control the way in which
the various dictionary manipulations are carried out. Thus, it is possible
to select which dictionaries are searched and which dictionary is used for
introduction of new identifiers.

2.2 Dictionary Class and Operators

2.2.1 The CLASS DICT

Class DICT is used to introduce a new dictionary. Its form is:

DICT <dictionary name>

After introduction the dictionary is set by:

<dictionary name>: HDICT

where HDICT is a macro that builds the data structure required for a dic-
tionary. Typically, a dictionary will be introduced and set by, for example:

DICT DC1: HDICT

After a dictionary name has been introduced and set it may be referenced,
much like a DIR. Referencing a dictionary name causes that dictionary to

MINT-3 New Features 3

become the current active dictionary. If the dictionary had not previously
been referenced, it is initialized and pushed onto the dictionary list (see
below). The compiler’s dictionaries, MAINDIC and INTDIC, may be ref-
erenced in this way. However, it is recommended that the user introduce
and use his own dictionaries. Thus,

DICT DC1: HDICT
DICT DC2: HDICT

: text section 1
DC1
: text section 2
DC2
: text section 3
DC1
will have the following effects:

1. The two new dictionaries DC1 and DC2 are created. Within text
section 1 new introductions are made into the dictionary that was
previously active.

2. Within text section 2 new introductions go into dictionary DCI.
3. Within text section 3 new introductions go into dictionary DC2.

4. After the last line (DC1) operation continues using DC1.

2.2.2 The \ and % Operators

Two operators permit transient use of dictionaries, i.e. the dictionary name
which follows the operator is used once and then the dictionary structure
is returned to its previous state. The two operators are \ which causes
identifier lookup in the specified dictionary, and % which introduces an
identifier into the specified dictionary. Thus,

4 MINT-3 New Features

DICT DC2: HDICT
DICT DC4: HDICT
DC2
VAR DCVAR:25
DC4
VAR DCVAR:50
FN FF: ENTRY
\DC2 DCVAR ->QTEMP
EXIT

is a function which would generate text to obtain the the value of DC-
VAR in dictionary DC2 even though dictionary DC4 would normally have
been searched first. The % operator directs introduction to the named
dictionary, as, for example:

%DC4 VAR DCVARX:75

would introduce the variable DCVARX into dictionary DC4 regardless of
what dictionary was currently active.

2.2.3 BLOCK and ENDBLOCK

The BLOCK and ENDBLOCK directives function as they did in MINT-2.
ENDBLOCK will always remove the dictionary created by its matching
BLOCK regardless of other dictionaries which may have been referenced
after the BLOCK directive.

2.2.4 SAVBLOCK and SETBLOCK

These directives operate almost exactly as they did in MINT-2. However,
in MINT-2 a SAVBLOCK of a directory using a directory address of a
directory which already contained entries would result in a merge of the
old entries with the new entries. In MINT-3 SAVBLOCK simply saves the
named directory.

2.2.5 The SETDIC Function

This function provides a means of setting a dictionary’s access control. Its
general form is:

SETDIC(<value>, <dictionary address>)

The function sets <value> as the access control for the dictionary whose

MINT-3 New Features 5

address is given. At present the following access controls are available:

Value Meaning

0 dictionary is not used for lookup (locked)
1 dictionary may be read or written

2 dictionary is read-only (lookup only)

Thus, for example:

SETDIC(0, @QINTDIC)
will exclude INTDIC from searches, and

SETDIC(1, QINTDIC)

will return it to read/write state so that it will be searched. For some
purposes it is more convenient to lock a dictionary rather than to remove
it from the dictionary chain. SETDIC may be applied to any dictionary
regardless of whether it is in the dictionary list. New dictionaries are always
initialized as read/write.

2.2.6 The LOCK, RD-ONLY, and UNLOCK Directives

These three directives reference NEXTELT, then SETDIC to set the re-
quested dictionary state. Each requires a dictionary name as its argument.
UNLOCK INTDIC is the replacement for ICL$ and LOCK INTDIC is the
replacement for RCLS.

2.2.7 The LASTDIC Function

This function provides a means of setting the point at which the search of
the dictionary list should be terminated. LASTDIC expects the top item
on the stack to be the address of a dictionary in the dictionary list. This
pointer is saved so that subsequent dictionary list searches stop after the
dictionary whose address was provided.

2.2.8 The ICL$ and RCL$ Directives

These directives act in the same way as in MINT-2, but by new means. The
RCLS$ directive performs a SETDIC(0, @QINTDIC), and ICL$ performs an

6 MINT-3 New Features

SETDIC(1, QINTDIC).

2.2.9 Notes on Dictionary Manipulation

There are two important points to keep in mind when managing multi-
ple dictionaries. First, each dictionary record contains a pointer to the
dictionary record for its CLASS. Therefore, items of class CLASS should
not be introduced into dictionaries which are then subsequently removed
if identifiers of that class are also introduced into other dictionaries which
are retained. There is no check that a CLASS pointer still points to the
intended dictionary item. Second, if multiple introductions of the same
identifier are made it is important to ensure that the point at which the
identifier is inserted and the dictionary search order are such that the in-
tended identifier is found. A prominent situation in which this could be
a problem is the introduction of identifiers which are the same as ones in
INTDIC after an ICL$ directive. The new identifier will be inserted in
MAINDIC, which is searched after INTDIC.

When the compiler is initialized it creates and references a dictionary
named USERDIC. Unless there is some special reason to do so, it is better
not to introduce new identifiers into the compiler dictionaries, MAINDIC
and INTDIC.

2.3 The Dictionary List

The dictionaries that are in current use are members of the list whose
list pointer is ENVLIST. Dictionary addresses may be pushed and popped
from this list either directly or by using the directives described below. In
addition there is a pointer to a particular item in the dictionary list which
determines the dictionary into which new definitions are added. Initially,
this pointer points to the top item in the list.

2.3.1 The Dictionary List Structure

The form of the dictionary structure after compiler initialization is:

MINT-3 New Features 7

ENVLIST —— 0
QINTDIC @Q@MAINDI(C
(locked) (open)
ENVSTRT >
LASTDICP >

Figure 1. Initial Dictionary List

The items in Figure 1 are defined as follows:

ENVLIST Pointer to start of dictionary list. All dictionary searches
start at the dictionary pointed to by ENVLIST.

ENVSTRT Pointer to current active dictionary. All new definitions
are inserted into this dictionary.

LASTDICP Pointer to the last dictionary to be searched. Setting
LASTDICP to a dictionary before the last in the list per-
mits searches of “windows” of dictionaries.

The example below shows the form of the list for the case where the
compiler has been initialized and then an ICL$ directive has been obeyed.

ENVLIST ——— 0
QINTDIC @MAINDI(
(open) (open)
ENVSTRT >
LASTDICP >

Figure 2. Dictionary List after ICL$

The ICL$ directive simply did a SETDIC(0,QINTDIC) to open INTDIC.
This has the effect that INTDIC and MAINDIC are searched when an
identifier is matched, but new definitions are inserted in MAINDIC. Note

8 MINT-3 New Features

that the requirement to match the longest string means that the entire
dictionary list must be searched on all matches.

2.3.2 The Compiler Dictionaries

The dictionary MAINDIC is the base dictionary for the system. It contains
the standard set of identifiers. Without this dictionary none of the normal
MINT identifiers can be matched. While a POPUP(@QENVLIST) will pop
this item if it is the only dictionary in the list, this is not a good idea in
most cases. When the compiler is initialized the dictionary list pointers are
set as shown in Figure 1. An RCLS is performed which locks the dictionary
INTDIC. The ICL$ directive unlocks INTDIC.

2.4 Details of Dictionary Manipulation Procedures

2.4.1 BLOCK and ENDBLOCK

The BLOCK directive performs the following operations:

1. A new dictionary is allocated, initialized to be empty, and pushed onto
the dictionary list.

2. The current active dictionary pointer is saved on a stack and the active
dictionary is set to the top of the dictionary stack.

3. The address of the new dictionary is saved in an internal list.
The ENDBLOCK directive performs the following operations:

1. The top address is obtained from the list used in BLOCK. This dictio-
nary is removed from the dictionary list. Note that the last dictionary
created by a BLOCK directory is the one removed regardless of any
dictionaries that may have been pushed onto the dictionary list by
other means.

2. The top item on the active pointer stack is obtained and the active
dictionary pointer is reset as it was before the previous BLOCK direc-
tive.

3. The record space used by the dictionary records and dictionary index
table is released.

These actions have the effect that a BLOCK/ENDBLOCK sequence is
transparent in the sense that the dictionary list and pointers are put back

MINT-3 New Features 9

as they were before the BLOCK directive, but any non-BLOCK changes
to the dictionary list are preserved. Thus, specifically, a dictionary may be
added by PUSHNDIC or PUSHODIC after a BLOCK directive and it will
remain in the dictionary list after the following ENDBLOCK. For example,
if the dictionary list was as shown in Figure 2 and then a BLOCK directive
was obeyed, the list would be:

ENVLIST —» 0
QINTDIC @MAINDI(C

ENVSTRT »——
LASTDICP

\ 4

Figure 3. Dictionary List after BLOCK

2.4.2 SAVBLOCK and SETBLOCK

The SAVBLOCK function acts exactly like ENDBLOCK except that the
dictionary address is stored at the address provided on the stack and the
dictionary records are not released. The SETBLOCK function acts exactly
like BLOCK except that the dictionary whose address is pointed to by the
address on the stack is pushed, rather than pushing a newly initialized
dictionary. Thus,

VAR SAVDIC:0
FN SAVRES:ENTRY, SAVBLOCK(@SAVDIC), SETBLOCK(@QSAVDIC),
EXIT

would perform an ENDBLOCK, but then save the dictionary address in
SAVDIC, and perform a BLOCK, but restoring the dictionary as the new
top item. Note that SAVBLOCK does not “accumulate” dictionary records
as was the case in previous versions of MINT.

2.5 Compiler Dictionary Manipulation Procedures

10 MINT-3 New Features

2.5.1 PUSHNDIC

This function allocates a new dictionary, initializes it to an empty state,
pushes its address onto the dictionary list, and returns the address on the
stack. Note that PUSHNDIC does not modify ENVSTRT.

2.5.2 PUSHODIC

This function expects a dictionary address on the stack. It pushes this
address onto the dictionary list. Note that PUSHODIC does not modify
ENVSTRT.

2.5.3 POPDIC

This function pops the top dictionary address from the dictionary list and
releases the dictionary and record space. Note that POPDIC does not
modify ENVSTRT.

2.5.4 ACTDIC

This function sets the active dictionary pointer, ENVSTRT, to the dictio-
nary whose address is supplied on the stack. Identifiers are always intro-
duced into the active dictionary.

2.6 Definition of Dictionary Records

Figure 4 shows the definition and contents of all dictionary-related records.

DICLIST REC

DIC —»

<
DICHASH
DICDLM
DICDLST
DICNMR
DICACCS
DICACTR
DICTREE
>DICSIZE

MINT-3 New Features

Example Records:

CLASS:

CLASS REC

IDINTRO
LABGEN
SETDATA

VAR XYZ

CLASS REC

SHUNT
VARGEN
SETDATA

11

DIC REC
DSHUNT CLASS REC
HASH TBL DSTATUS syntax
DICP DCLASS gen
DADDR set
L8151 DLINK
DNAME
- (rext record)
: ! — OBJ REC
I I *
I I
I I
I I
I I
I I
VAR LAB FN
OBJ REC OBJ REC OBJ REC
SHUNT SHUNT SHUNT
VARGEN LABGEN FNGEN
SETDATA NULL SETPROG
FN FUNC
OBJ REC CLASS REC OBJ REC
values SHUNT function
FNGEN text
SETPROG

(Records of CLASS VAR)

(Records of CLASS FN)

Figure 4. Dictionary Record Structure.

12 MINT-3 New Features

2.7 Dictionary and Identifier Displays

The LV$ directive has been modified so that it displays the identifiers in
each of the dictionaries in the current list from ENVLIST through LAST-
DICP. It also lists the dictionary name and count of items for each dictio-
nary. The new directive, OBJ, provides a convenient means to display the
identifiers in a given dictionary. (see below.)

2.7.1 Display of Objects

The directive LISTDICS lists the name and item count for each dictionary
in the current list from ENVLIST through LASTDICP. The directive OBJ
<object name> lists the properties and body of any object whose CLASS
is known within the compiler. Specifically, if the object is a FN or DIR the
object text will be displayed, and if the object is a DICT, the identifiers in
that dictionary will be displayed.

The directive CURDIC will display the identifiers in the currently
active dictionary.

The directive PREVDIC will display the identifiers in the “previous”
dictionary. On the first use of PREVDIC, after a use of CURDIC, it
will display the contents of the dictionary previous to the current active
dictionary. If PREVDIC is referenced again, it will display the contents of
the next previous dictionary. Further references provide displays of further
dictionaries until the end of the dictionary list, at which point the cycle
will repeat.

2.8 Use of NOW and PDUMP

Note that since NOW references BLOCK and since BLOCK pushes a new
dictionary onto the dictionary list, constructs like:

NOW PDUMP('SAVE’), GO 32768 !

are not a very good idea since an extra dictionary will have been left on
the list due to the fact that the ENDBLOCK in ! is not executed. For this
reason a directive, CDUMP, is available. CDUMP expects two arguments
which are the filename for the PDUMP and the address to which to transfer
on reload. If this address is 0 a normal EXIT is taken on reload. Thus, a
standard means of creating a PDUMP of the compiler is:

CDUMP "COMP’ 32768

MINT-3 New Features 13

2.9 Auto-compilation Facilities

2.9.1 The Dictionary List during Auto-compilation

The text in MINTAUTO introduces and sets two dictionaries, MAUTO
and TAUTO. When the AUTO directive is referenced the active dictionary
is set to MAUTO. TAUTO is referenced in the text when it is required
to introduce identifiers in the compiler internal dictionary. Thus, for the
auto-compilation process MAUTO and IAUTO correspond to MAINDIC
and INTDIC respectively. The GENSYS directive copies and relocates
these dictionaries into data space and converts them into MAINDIC and
INTDIC.

2.9.2 OLDIC

During auto-compilation a variable, BASESTRT, is used to control the
point in the dictionary list at which identifier searches are started. BASES-
TRT is set to point to INTDIC. OLDIC does a lookup starting at BASES-
TRT. This causes previously defined identifiers (introduced in INTDIC or
MAINDIC) to be found through OLDIC lookups, but new identifiers to be
inserted and matched in MAUTO or TAUTO.

3. B-Tree Data Access

The purpose of these routines is to provide a B-tree access structure for
storing and retrieving data items or records within MINT VSTORE. The
routines provide the following functions: intitialization, storage of data for
a given key, deletion of data, and a function that permits operation on
each data item stored under a given key. Nodes in the tree are filled as
new keys are stored, and split when they become full. At present, there is
no provision for compacting the tree structure or deleting keys. If all the
data items for a given key are deleted the key sequence will remain, with
an empty item list at the end of it. Leaf nodes are split without increasing
the tree depth and all non-terminal nodes are split by introducing a new
node that increases the depth of its branch by one.

The node search function is supplied as an argument when a tree is
initialized. Nodes contain single-word entries for keys. However, the search
function may interpret these entries as addresses and thus may perform the
comparison on any user-defined structure.

3.1 B-tree Functions

3.1.1 BTINIT

This function creates the initial tree structure. It requires four arguments:
the address of a pointer to the tree (for future reference), the address of
the key compare function, and lower and upper limits for the expected key
values. Thus, a reference is:

BTINIT(<lower limit>, <upper limit>, [key compare function], <tree
pointer>)

The key compare function is a function which locates the correct entry in a
node, given the key. The user is required to provide this function in order
to permit the B-tree mechanism to be used with key structures of the user’s
choice. If the key is a one-word item it may be stored directly in the node.
Otherwise, the entries in the nodes should be addresses of key objects (such

MINT-3 New Features 15

as variable length strings). If the key entry in the node is an address then
the key values supplied for all other B-tree functions must be addresses of
compatible objects. The key compare function must be written to expect
three arguments and to return one argument. The three input arguments
are:

1. key. This is either a key value or the address of a key structure. It
must have the form used in all the other function references.

2. @first entry. This is the address of the first entry in the table to be
searched.

3. number of entries. Number of entries to search.

Each entry in the table pointed to by the second argument is two words
long. The key address or value is in the first word and a pointer is in the
second word. Therefore, the search routine should increment by two as it
compares table entries.

The returned argument is the address of the second word (pointer) of
the entry before the entry containing the key greater than or equal to the
argument key. If no key is found that is greater than or equal then the
address of the second word of the last entry is returned.

The address of the tree pointer is required as an argument in all of the
functions so that multiple trees may be in use at any time.

3.1.2 BTDEL

This function deletes the entire tree and returns all node and data item
records to the record pool. Its reference is:

BTDEL(<tree pointer>)

3.1.3 BTINSRT

This function inserts a data item under the key provided. Its reference is:

BTINSRT(<data>, <key>, <tree pointer>)

3.1.4 BTREM

This function removes all data items stored under the given key. Its refer-
ence is:

BTREM(<data>, <key>, <tree pointer>)

16 MINT-3 New Features

3.2 FORBTVAL.

This function applies the provided function to each data item stored under
the given key. Its reference is:

FORBTVAL(<key>, [<function reference>], <tree pointer>)

3.3 Data Structures

There are two data stuctures: non-terminal nodes and leaf nodes.

node leaf
parent parent
0 -1
no. entries no. entries
pointer 0
pointer — key] key
pointer listp
| key] key
pointer listp
key] key		
pointer listp

Figure 5. Node and Leaf Data Structures

4. Other New Features

4.1 Precedence Mechanism (PRIORITY)

The precedence or shunt factor of each identifier has been moved from the
CLASS record to the identifier’s dictionary record. Due to this change
it is possible to set an operator’s precedence independent of its CLASS.
The directive PRIORITY provides the means of setting precedence. In
principle, precedence could be changed dynamically during processing. The
use of PRIORITY is as follows:

PRIORITY <n> <identifier introduction>

This statement causes precedence <n> to be applied to the following intro-
duction. After the introduction the default priority is reset to 0. Thus, an
example use is:

PRIORITY 4 PRIMOP MASK 15

This is the text used in the compiler to set priority 4 for the operator
MASK, and set its value (operation code) to 15.

4.2 Deleting an Item List

The function CLEARLST (<@listp>) is available to perform a POPUP on
each item in the list.

4.3 Operation on Characters of a String (FORCHYS)

The FORCHS function provides a means of applying a procedure to each
character in a string. It is referenced as follows:

FORCHS(<string address>, [function])

where [function] is a function that expects a character on the stack and
returns its character result on the stack. FORCHS obtains a character
from the string, references the function, and pushes the top item on the
stack back into the character position of the obtained character. This

18 MINT-3 New Features

operation is performed on each character in the string in order.

4.4 Input and Output Enhancements.

The OPINT and OPINTD functions have been enhanced by use of zero
value of the width parameter to mean variable width. In addition, the
variable CWIDTH is set to the width actually used on each OPINT or
OPINTD reference. The width used when WIDTH has been set to zero is
the width required to display the digits. Thus,

SETBSE(#0, 0, 10), OPINTD(123)

will display 123 without any leading or trailing blanks. After this operation
the value of CWIDTH will be 3.

All input and output functions have been adjusted so that they handle
32 bit numbers.

A function INHEX is included for reading numbers in standard HEX
format. It operates just like ININT.

The directive $ reads the immediately following constant using HEX
format. Thus, VAR XX:$FF would assign the value 255 to the variable
XX.

4.5 New Features in the Portable 32-bit Virtual Machine

4.5.1 C-coded Large VSTORE System

A new Virtual Machine has been written in ANSI C. This implementation is
highly portable. It runs on any Linux platform and on other systems which
have an ANSI C compiler, and support virtual memory. Systems can easily
be configured to run in small real memory systems if this is required. The
current default VSTORE size is 16M words, but this is easily reconfigured.

4.5.2 Use of environment variable MINT HOME

The Virtual machine loader uses the environment variable MINT HOME
to locate the MINT system files. This variable should contain the path to
the “mint3” directory in the distribution.

MINT-3 New Features 19

4.5.3 New Debugging Features

A new primitive, VMDEBUG, is available to control Virtual machine debug
mode. VMDEBUG pops the stack and stores the value in an internal
register which determines VM debug mode. If the register is 0 debugging
is turned off, and the VM runs at full-speed. If the register is non-0 VM
debugging is turned on and, currently, the VM speed is about 1/2. With
debugging on the following actions are taken:

1. Address values are checked for the range 80 < address < MAXVS-
TORE.

2. Instruction values and the current top of stack are pushed into a cir-
cular list. In the event of an abnormal condition, the list is displayed
and is written to the file: mint-tr.trc.

The option of attempting restart is available after an abnormal stop.
On restart, normal entry to the compiler is taken. Of course, this may not
always work.

4.5.4 Use of the readline Library

For systems, such as Linux and Mac OSX 10, the GNU readline library has
been used in the VM INCHAR routine. This enables input line editing and
input line history. This change does not require additional documentation
since readline itself is documented in the system that provides it.

If your system does not provide readline, the feature may be turned off
by removing the define of READLINE in mdefs.h and editing the makefile.

4.5.5 VM Update (January 2004)

A change was made to the VM stack handling and, as a result, a change
was made to the header information in the PDUMP format.

The change to the VM is that the operand stack now expands dynam-
ically if it reaches its size limit. Both the operand and the link stack are
now obtained by use of malloc(). Operand stack expansion uses realloc().

In order to make PDUMP format work correctly with variable stack
sizes, the stack sizes are included in the header and used to load the correct
size. For this reason the PDUMP version, as written in the header, was
incremented. Older format PDUMP files will be read using the assumed
default stack size (100 words).

